rtcdet_v2_pred.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. # Single-level pred layer
  5. class SingleLevelPredLayer(nn.Module):
  6. def __init__(self, cls_dim, reg_dim, num_classes, num_coords=4):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.cls_dim = cls_dim
  10. self.reg_dim = reg_dim
  11. self.num_classes = num_classes
  12. self.num_coords = num_coords
  13. # --------- Network Parameters ----------
  14. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  15. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  16. self.init_bias()
  17. def init_bias(self):
  18. # Init bias
  19. init_prob = 0.01
  20. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  21. # cls pred
  22. b = self.cls_pred.bias.view(1, -1)
  23. b.data.fill_(bias_value.item())
  24. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  25. # reg pred
  26. b = self.reg_pred.bias.view(-1, )
  27. b.data.fill_(1.0)
  28. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  29. w = self.reg_pred.weight
  30. w.data.fill_(0.)
  31. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  32. def forward(self, cls_feat, reg_feat):
  33. """
  34. in_feats: (Tensor) [B, C, H, W]
  35. """
  36. cls_pred = self.cls_pred(cls_feat)
  37. reg_pred = self.reg_pred(reg_feat)
  38. return cls_pred, reg_pred
  39. # Multi-level pred layer
  40. class MultiLevelPredLayer(nn.Module):
  41. def __init__(self, cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3, reg_max=16):
  42. super().__init__()
  43. # --------- Basic Parameters ----------
  44. self.cls_dim = cls_dim
  45. self.reg_dim = reg_dim
  46. self.strides = strides
  47. self.num_classes = num_classes
  48. self.num_coords = num_coords
  49. self.num_levels = num_levels
  50. self.reg_max = reg_max
  51. # ----------- Network Parameters -----------
  52. ## pred layers
  53. self.multi_level_preds = nn.ModuleList(
  54. [SingleLevelPredLayer(
  55. cls_dim,
  56. reg_dim,
  57. num_classes,
  58. num_coords * self.reg_max)
  59. for _ in range(num_levels)
  60. ])
  61. ## proj conv
  62. self.proj = nn.Parameter(torch.linspace(0, reg_max, reg_max), requires_grad=False)
  63. self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False)
  64. self.proj_conv.weight = nn.Parameter(self.proj.view([1, reg_max, 1, 1]).clone().detach(), requires_grad=False)
  65. def generate_anchors(self, level, fmp_size):
  66. """
  67. fmp_size: (List) [H, W]
  68. """
  69. # generate grid cells
  70. fmp_h, fmp_w = fmp_size
  71. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  72. # [H, W, 2] -> [HW, 2]
  73. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  74. anchors += 0.5 # add center offset
  75. anchors *= self.strides[level]
  76. return anchors
  77. def forward(self, cls_feats, reg_feats):
  78. all_anchors = []
  79. all_strides = []
  80. all_cls_preds = []
  81. all_reg_preds = []
  82. all_box_preds = []
  83. for level in range(self.num_levels):
  84. # pred
  85. cls_pred, reg_pred = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  86. # generate anchor boxes: [M, 4]
  87. B, _, H, W = cls_pred.size()
  88. fmp_size = [H, W]
  89. anchors = self.generate_anchors(level, fmp_size)
  90. anchors = anchors.to(cls_pred.device)
  91. # stride tensor: [M, 1]
  92. stride_tensor = torch.ones_like(anchors[..., :1]) * self.strides[level]
  93. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  94. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  95. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  96. # ----------------------- Decode bbox -----------------------
  97. B, M = reg_pred.shape[:2]
  98. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
  99. reg_pred_ = reg_pred.reshape([B, M, 4, self.reg_max])
  100. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  101. reg_pred_ = reg_pred_.permute(0, 3, 2, 1).contiguous()
  102. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  103. reg_pred_ = self.proj_conv(F.softmax(reg_pred_, dim=1))
  104. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  105. reg_pred_ = reg_pred_.view(B, 4, M).permute(0, 2, 1).contiguous()
  106. ## tlbr -> xyxy
  107. x1y1_pred = anchors[None] - reg_pred_[..., :2] * self.strides[level]
  108. x2y2_pred = anchors[None] + reg_pred_[..., 2:] * self.strides[level]
  109. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  110. all_cls_preds.append(cls_pred)
  111. all_reg_preds.append(reg_pred)
  112. all_box_preds.append(box_pred)
  113. all_anchors.append(anchors)
  114. all_strides.append(stride_tensor)
  115. # output dict
  116. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  117. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  118. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  119. "anchors": all_anchors, # List(Tensor) [M, 2]
  120. "strides": self.strides, # List(Int) = [8, 16, 32]
  121. "stride_tensor": all_strides # List(Tensor) [M, 1]
  122. }
  123. return outputs
  124. # build detection head
  125. def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  126. pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels)
  127. return pred_layers