| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- import numpy as np
- import torch
- import torch.nn as nn
- # ---------------------------- Base Conv Module ----------------------------
- class SiLU(nn.Module):
- """export-friendly version of nn.SiLU()"""
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- ## Basic Conv Module
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type='lrelu', # activation
- norm_type='BN', # normalization
- depthwise=False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- p = p if d == 1 else d
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type is not None:
- convs.append(get_norm(norm_type, c1))
- if act_type is not None:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type is not None:
- convs.append(get_norm(norm_type, c2))
- if act_type is not None:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type is not None:
- convs.append(get_norm(norm_type, c2))
- if act_type is not None:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- ## Partial Conv Module
- class PartialConv(nn.Module):
- def __init__(self, in_dim, out_dim, split_ratio=0.25, kernel_size=1, stride=1, act_type=None, norm_type=None):
- super().__init__()
- # ----------- Basic Parameters -----------
- assert in_dim == out_dim
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.split_ratio = split_ratio
- self.split_dim = round(in_dim * split_ratio)
- self.untouched_dim = in_dim - self.split_dim
- self.kernel_size = kernel_size
- self.padding = kernel_size // 2
- self.stride = stride
- self.act_type = act_type
- self.norm_type = norm_type
- # ----------- Network Parameters -----------
- self.partial_conv = Conv(self.split_dim, self.split_dim, self.kernel_size, self.padding, self.stride, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- x1, x2 = torch.split(x, [self.split_dim, self.untouched_dim], dim=1)
- x1 = self.partial_conv(x1)
- x = torch.cat((x1, x2), 1)
- return x
- ## Channel Shuffle
- class ChannelShuffle(nn.Module):
- def __init__(self, groups=1) -> None:
- super().__init__()
- self.groups = groups
- def forward(self, x):
- # type: (torch.Tensor, int) -> torch.Tensor
- batchsize, num_channels, height, width = x.data.size()
- channels_per_group = num_channels // self.groups
- # reshape
- x = x.view(batchsize, self.groups,
- channels_per_group, height, width)
- x = torch.transpose(x, 1, 2).contiguous()
- # flatten
- x = x.view(batchsize, -1, height, width)
- return x
- ## Inverse BottleNeck
- class InverseBottleneck(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expand_ratio=2.0,
- shortcut=False,
- act_type='silu',
- norm_type='BN',
- depthwise=False):
- super(InverseBottleneck, self).__init__()
- # ----------- Basic Parameters -----------
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.expand_dim = int(in_dim * expand_ratio)
- # ----------- Network Parameters -----------
- self.cv1 = Conv(in_dim, in_dim, k=3, p=1, act_type=None, norm_type=norm_type, depthwise=depthwise)
- self.cv2 = Conv(in_dim, self.expand_dim, k=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.cv3 = Conv(self.expand_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv3(self.cv2(self.cv1(x)))
- return x + h if self.shortcut else h
- ## YOLO-style BottleNeck
- class YoloBottleneck(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expand_ratio=0.5,
- shortcut=False,
- act_type='silu',
- norm_type='BN',
- depthwise=False):
- super(YoloBottleneck, self).__init__()
- # ------------------ Basic parameters ------------------
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.inter_dim = int(out_dim * expand_ratio)
- self.shortcut = shortcut and in_dim == out_dim
- # ------------------ Network parameters ------------------
- self.cv1 = Conv(in_dim, self.inter_dim, k=1, norm_type=norm_type, act_type=act_type)
- self.cv2 = Conv(self.inter_dim, out_dim, k=3, p=1, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
- def forward(self, x):
- h = self.cv2(self.cv1(x))
- return x + h if self.shortcut else h
- # ---------------------------- Base Modules ----------------------------
- ## ELAN Stage of Backbone
- class ELAN_Stage(nn.Module):
- def __init__(self, in_dim, out_dim, squeeze_ratio :float=0.5, branch_depth :int=1, shortcut=False, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- # ----------- Basic Parameters -----------
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.inter_dim = round(in_dim * squeeze_ratio)
- self.squeeze_ratio = squeeze_ratio
- self.branch_depth = branch_depth
- # ----------- Network Parameters -----------
- self.cv1 = Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv3 = nn.Sequential(*[
- YoloBottleneck(self.inter_dim, self.inter_dim, 1.0, shortcut, act_type, norm_type, depthwise)
- for _ in range(branch_depth)
- ])
- self.cv4 = nn.Sequential(*[
- YoloBottleneck(self.inter_dim, self.inter_dim, 1.0, shortcut, act_type, norm_type, depthwise)
- for _ in range(branch_depth)
- ])
- ## output
- self.out_conv = Conv(self.inter_dim*4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- x3 = self.cv3(x2)
- x4 = self.cv4(x3)
- out = self.out_conv(torch.cat([x1, x2, x3, x4], dim=1))
- return out
-
- ## DownSample Block
- class DSBlock(nn.Module):
- def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.inter_dim = out_dim // 2
- # branch-1
- self.maxpool = nn.Sequential(
- Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- nn.MaxPool2d((2, 2), 2)
- )
- # branch-2
- self.ds_conv = nn.Sequential(
- Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- Conv(self.inter_dim, self.inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- # branch-1
- x1 = self.maxpool(x)
- # branch-2
- x2 = self.ds_conv(x)
- # out-proj
- out = torch.cat([x1, x2], dim=1)
- return out
- # ---------------------------- FPN Modules ----------------------------
- ## build fpn's core block
- def build_fpn_block(cfg, in_dim, out_dim):
- if cfg['fpn_core_block'] == 'elan_block':
- layer = ELAN_Stage(in_dim = in_dim,
- out_dim = out_dim,
- squeeze_ratio = cfg['fpn_squeeze_ratio'],
- branch_depth = round(3 * cfg['depth']),
- shortcut = False,
- act_type = cfg['fpn_act'],
- norm_type = cfg['fpn_norm'],
- depthwise = cfg['fpn_depthwise']
- )
-
- return layer
- ## build fpn's reduce layer
- def build_reduce_layer(cfg, in_dim, out_dim):
- if cfg['fpn_reduce_layer'] == 'conv':
- layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
-
- return layer
- ## build fpn's downsample layer
- def build_downsample_layer(cfg, in_dim, out_dim):
- if cfg['fpn_downsample_layer'] == 'conv':
- layer = Conv(in_dim, out_dim, k=3, s=2, p=1,
- act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'])
- elif cfg['fpn_downsample_layer'] == 'maxpool':
- assert in_dim == out_dim
- layer = nn.MaxPool2d((2, 2), stride=2)
-
- return layer
|