box_ops.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. import torch
  2. import math
  3. import numpy as np
  4. from torchvision.ops.boxes import box_area
  5. # modified from torchvision to also return the union
  6. def box_iou(boxes1, boxes2):
  7. area1 = box_area(boxes1)
  8. area2 = box_area(boxes2)
  9. lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
  10. rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
  11. wh = (rb - lt).clamp(min=0) # [N,M,2]
  12. inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
  13. union = area1[:, None] + area2 - inter
  14. iou = inter / union
  15. return iou, union
  16. def get_ious(bboxes1,
  17. bboxes2,
  18. box_mode="xyxy",
  19. iou_type="iou"):
  20. """
  21. Compute iou loss of type ['iou', 'giou', 'linear_iou']
  22. Args:
  23. inputs (tensor): pred values
  24. targets (tensor): target values
  25. weight (tensor): loss weight
  26. box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported.
  27. loss_type (str): 'giou' or 'iou' or 'linear_iou'
  28. reduction (str): reduction manner
  29. Returns:
  30. loss (tensor): computed iou loss.
  31. """
  32. if box_mode == "ltrb":
  33. bboxes1 = torch.cat((-bboxes1[..., :2], bboxes1[..., 2:]), dim=-1)
  34. bboxes2 = torch.cat((-bboxes2[..., :2], bboxes2[..., 2:]), dim=-1)
  35. elif box_mode != "xyxy":
  36. raise NotImplementedError
  37. eps = torch.finfo(torch.float32).eps
  38. bboxes1_area = (bboxes1[..., 2] - bboxes1[..., 0]).clamp_(min=0) \
  39. * (bboxes1[..., 3] - bboxes1[..., 1]).clamp_(min=0)
  40. bboxes2_area = (bboxes2[..., 2] - bboxes2[..., 0]).clamp_(min=0) \
  41. * (bboxes2[..., 3] - bboxes2[..., 1]).clamp_(min=0)
  42. w_intersect = (torch.min(bboxes1[..., 2], bboxes2[..., 2])
  43. - torch.max(bboxes1[..., 0], bboxes2[..., 0])).clamp_(min=0)
  44. h_intersect = (torch.min(bboxes1[..., 3], bboxes2[..., 3])
  45. - torch.max(bboxes1[..., 1], bboxes2[..., 1])).clamp_(min=0)
  46. area_intersect = w_intersect * h_intersect
  47. area_union = bboxes2_area + bboxes1_area - area_intersect
  48. ious = area_intersect / area_union.clamp(min=eps)
  49. if iou_type == "iou":
  50. return ious
  51. elif iou_type == "giou":
  52. g_w_intersect = torch.max(bboxes1[..., 2], bboxes2[..., 2]) \
  53. - torch.min(bboxes1[..., 0], bboxes2[..., 0])
  54. g_h_intersect = torch.max(bboxes1[..., 3], bboxes2[..., 3]) \
  55. - torch.min(bboxes1[..., 1], bboxes2[..., 1])
  56. ac_uion = g_w_intersect * g_h_intersect
  57. gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
  58. return gious
  59. else:
  60. raise NotImplementedError
  61. def rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas=None):
  62. origin_h, origin_w = origin_img_size
  63. cur_img_h, cur_img_w = cur_img_size
  64. if deltas is None:
  65. # rescale
  66. bboxes[..., [0, 2]] = bboxes[..., [0, 2]] / cur_img_w * origin_w
  67. bboxes[..., [1, 3]] = bboxes[..., [1, 3]] / cur_img_h * origin_h
  68. # clip bboxes
  69. bboxes[..., [0, 2]] = np.clip(bboxes[..., [0, 2]], a_min=0., a_max=origin_w)
  70. bboxes[..., [1, 3]] = np.clip(bboxes[..., [1, 3]], a_min=0., a_max=origin_h)
  71. else:
  72. # rescale
  73. bboxes[..., [0, 2]] = bboxes[..., [0, 2]] / (cur_img_w - deltas[0]) * origin_w
  74. bboxes[..., [1, 3]] = bboxes[..., [1, 3]] / (cur_img_h - deltas[1]) * origin_h
  75. # clip bboxes
  76. bboxes[..., [0, 2]] = np.clip(bboxes[..., [0, 2]], a_min=0., a_max=origin_w)
  77. bboxes[..., [1, 3]] = np.clip(bboxes[..., [1, 3]], a_min=0., a_max=origin_h)
  78. return bboxes
  79. def bbox2dist(anchor_points, bbox, reg_max):
  80. '''Transform bbox(xyxy) to dist(ltrb).'''
  81. x1y1, x2y2 = torch.split(bbox, 2, -1)
  82. lt = anchor_points - x1y1
  83. rb = x2y2 - anchor_points
  84. dist = torch.cat([lt, rb], -1).clamp(0, reg_max - 0.01)
  85. return dist
  86. # copy from YOLOv5
  87. def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
  88. # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
  89. # Get the coordinates of bounding boxes
  90. if xywh: # transform from xywh to xyxy
  91. (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
  92. w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
  93. b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
  94. b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
  95. else: # x1, y1, x2, y2 = box1
  96. b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
  97. b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
  98. w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
  99. w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
  100. # Intersection area
  101. inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
  102. (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
  103. # Union Area
  104. union = w1 * h1 + w2 * h2 - inter + eps
  105. # IoU
  106. iou = inter / union
  107. if CIoU or DIoU or GIoU:
  108. cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
  109. ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
  110. if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
  111. c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
  112. rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
  113. if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
  114. v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
  115. with torch.no_grad():
  116. alpha = v / (v - iou + (1 + eps))
  117. return iou - (rho2 / c2 + v * alpha) # CIoU
  118. return iou - rho2 / c2 # DIoU
  119. c_area = cw * ch + eps # convex area
  120. return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
  121. return iou # IoU
  122. if __name__ == '__main__':
  123. box1 = torch.tensor([[10, 10, 20, 20]])
  124. box2 = torch.tensor([[15, 15, 20, 20]])
  125. iou = box_iou(box1, box2)
  126. print(iou)