| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- try:
- from .yolov8_basic import Conv, ELAN_CSP_Block
- except:
- from yolov8_basic import Conv, ELAN_CSP_Block
- # PaFPN-ELAN
- class Yolov8PaFPN(nn.Module):
- def __init__(self,
- in_dims=[256, 512, 512],
- width=1.0,
- depth=1.0,
- ratio=1.0,
- act_type='silu',
- norm_type='BN',
- depthwise=False):
- super(Yolov8PaFPN, self).__init__()
- print('==============================')
- print('FPN: {}'.format("ELAN_PaFPN"))
- self.in_dims = in_dims
- self.width = width
- self.depth = depth
- c3, c4, c5 = in_dims
- # top dwon
- ## P5 -> P4
- self.head_elan_1 = ELAN_CSP_Block(in_dim=c5 + c4,
- out_dim=int(512*width),
- expand_ratio=0.5,
- nblocks=int(3*depth),
- shortcut=False,
- depthwise=depthwise,
- norm_type=norm_type,
- act_type=act_type
- )
- # P4 -> P3
- self.head_elan_2 = ELAN_CSP_Block(in_dim=int(512*width) + c3,
- out_dim=int(256*width),
- expand_ratio=0.5,
- nblocks=int(3*depth),
- shortcut=False,
- depthwise=depthwise,
- norm_type=norm_type,
- act_type=act_type
- )
- # bottom up
- # P3 -> P4
- self.mp1 = Conv(int(256*width), int(256*width), k=3, p=1, s=2,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.head_elan_3 = ELAN_CSP_Block(in_dim=int(256*width) + int(512*width),
- out_dim=int(512*width),
- expand_ratio=0.5,
- nblocks=int(3*depth),
- shortcut=False,
- depthwise=depthwise,
- norm_type=norm_type,
- act_type=act_type
- )
- # P4 -> P5
- self.mp2 = Conv(int(512 * width), int(512 * width), k=3, p=1, s=2,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.head_elan_4 = ELAN_CSP_Block(in_dim=int(512 * width) + c5,
- out_dim=int(512 * width * ratio),
- expand_ratio=0.5,
- nblocks=int(3*depth),
- shortcut=False,
- depthwise=depthwise,
- norm_type=norm_type,
- act_type=act_type
- )
- self.out_dim = [int(256 * width), int(512 * width), int(512 * width * ratio)]
- def forward(self, features):
- c3, c4, c5 = features
- # Top down
- ## P5 -> P4
- c6 = F.interpolate(c5, scale_factor=2.0)
- c7 = torch.cat([c6, c4], dim=1)
- c8 = self.head_elan_1(c7)
- ## P4 -> P3
- c9 = F.interpolate(c8, scale_factor=2.0)
- c10 = torch.cat([c9, c3], dim=1)
- c11 = self.head_elan_2(c10)
- # Bottom up
- # p3 -> P4
- c12 = self.mp1(c11)
- c13 = torch.cat([c12, c8], dim=1)
- c14 = self.head_elan_3(c13)
- # P4 -> P5
- c15 = self.mp2(c14)
- c16 = torch.cat([c15, c5], dim=1)
- c17 = self.head_elan_4(c16)
- out_feats = [c11, c14, c17] # [P3, P4, P5]
-
- return out_feats
- def build_fpn(cfg, in_dims):
- model = cfg['fpn']
- # build neck
- if model == 'yolov8_pafpn':
- fpn_net = Yolov8PaFPN(in_dims=in_dims,
- width=cfg['width'],
- depth=cfg['depth'],
- ratio=cfg['ratio'],
- act_type=cfg['fpn_act'],
- norm_type=cfg['fpn_norm'],
- depthwise=cfg['fpn_depthwise']
- )
- return fpn_net
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'fpn': 'Yolov8PaFPN',
- 'fpn_act': 'silu',
- 'fpn_norm': 'BN',
- 'fpn_depthwise': False,
- 'width': 1.0,
- 'depth': 1.0,
- 'ratio': 1.0,
- }
- model = build_fpn(cfg, in_dims=[256, 512, 512])
- pyramid_feats = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 512, 20, 20)]
- t0 = time.time()
- outputs = model(pyramid_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|