| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .matcher import TaskAlignedAssigner
- from utils.box_ops import bbox2dist, bbox_iou
- class Criterion(object):
- def __init__(self,
- cfg,
- device,
- num_classes=80):
- self.cfg = cfg
- self.device = device
- self.num_classes = num_classes
- self.reg_max = cfg['reg_max']
- self.use_dfl = cfg['reg_max'] > 1
- # loss
- self.cls_lossf = ClassificationLoss(cfg, reduction='none')
- self.reg_lossf = RegressionLoss(num_classes, cfg['reg_max'] - 1, self.use_dfl)
- # loss weight
- self.loss_cls_weight = cfg['loss_cls_weight']
- self.loss_iou_weight = cfg['loss_iou_weight']
- self.loss_dfl_weight = cfg['loss_dfl_weight']
- # matcher
- matcher_config = cfg['matcher']
- self.matcher = TaskAlignedAssigner(
- topk=matcher_config['topk'],
- num_classes=num_classes,
- alpha=matcher_config['alpha'],
- beta=matcher_config['beta']
- )
- def __call__(self, outputs, targets):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_regs']: List(Tensor) [B, M, 4*(reg_max+1)]
- outputs['pred_boxs']: List(Tensor) [B, M, 4]
- outputs['anchors']: List(Tensor) [M, 2]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- outputs['stride_tensor']: List(Tensor) [M, 1]
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- strides = outputs['stride_tensor']
- anchors = outputs['anchors']
- anchors = torch.cat(anchors, dim=0)
- num_anchors = anchors.shape[0]
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- reg_preds = torch.cat(outputs['pred_reg'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
-
- # label assignment
- gt_label_targets = []
- gt_score_targets = []
- gt_bbox_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
- tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
- # check target
- if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
- # There is no valid gt
- fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
- gt_label = cls_preds.new_zeros((1, num_anchors,)) #[1, M,]
- gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
- gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
- else:
- tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
- tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
- (
- gt_label, #[1, M,]
- gt_box, #[1, M, 4]
- gt_score, #[1, M, C]
- fg_mask #[1, M,]
- ) = self.matcher(
- pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
- pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
- anc_points = anchors,
- gt_labels = tgt_labels,
- gt_bboxes = tgt_boxs
- )
- gt_label_targets.append(gt_label)
- gt_score_targets.append(gt_score)
- gt_bbox_targets.append(gt_box)
- fg_masks.append(fg_mask)
- # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
- fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
- gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
- gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
- gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
-
- # cls loss
- cls_preds = cls_preds.view(-1, self.num_classes)
- gt_label_targets = torch.where(
- fg_masks > 0,
- gt_label_targets,
- torch.full_like(gt_label_targets, self.num_classes)
- )
- gt_labels_one_hot = F.one_hot(gt_label_targets.long(), self.num_classes + 1)[..., :-1]
- loss_cls = self.cls_lossf(cls_preds, gt_score_targets, gt_labels_one_hot)
- # reg loss
- anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2) # [BM, 2]
- strides = torch.cat(strides, dim=0).unsqueeze(0).repeat(bs, 1, 1).view(-1, 1) # [BM, 1]
- bbox_weight = gt_score_targets[fg_masks].sum(-1, keepdim=True) # [BM, 1]
- reg_preds = reg_preds.view(-1, 4*self.reg_max) # [BM, 4*(reg_max + 1)]
- box_preds = box_preds.view(-1, 4) # [BM, 4]
- loss_iou, loss_dfl = self.reg_lossf(
- pred_regs = reg_preds,
- pred_boxs = box_preds,
- anchors = anchors,
- gt_boxs = gt_bbox_targets,
- bbox_weight = bbox_weight,
- fg_masks = fg_masks,
- strides = strides,
- )
-
- loss_cls = loss_cls.sum()
- loss_iou = loss_iou.sum()
- loss_dfl = loss_dfl.sum()
- gt_score_targets_sum = gt_score_targets.sum()
- # normalize loss
- if gt_score_targets_sum > 0:
- loss_cls /= gt_score_targets_sum
- loss_iou /= gt_score_targets_sum
- loss_dfl /= gt_score_targets_sum
- # total loss
- losses = loss_cls * self.loss_cls_weight + \
- loss_iou * self.loss_iou_weight
- if self.use_dfl:
- losses += loss_dfl * self.loss_dfl_weight
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_iou = loss_iou,
- loss_dfl = loss_dfl,
- losses = losses
- )
- else:
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_iou = loss_iou,
- losses = losses
- )
- return loss_dict
-
- class ClassificationLoss(nn.Module):
- def __init__(self, cfg, reduction='none'):
- super(ClassificationLoss, self).__init__()
- self.cfg = cfg
- self.reduction = reduction
- # For VFL
- self.alpha = 0.75
- self.gamma = 2.0
- def varifocalloss(self, pred_logits, gt_score, gt_label, alpha=0.75, gamma=2.0):
- focal_weight = alpha * pred_logits.sigmoid().pow(gamma) * (1 - gt_label) + gt_score * gt_label
- with torch.cuda.amp.autocast(enabled=False):
- bce_loss = F.binary_cross_entropy_with_logits(
- pred_logits.float(), gt_score.float(), reduction='none')
- loss = bce_loss * focal_weight
- if self.reduction == 'sum':
- loss = loss.sum()
- elif self.reduction == 'mean':
- loss = loss.mean()
- return loss
- def binary_cross_entropy(self, pred_logits, gt_score):
- loss = F.binary_cross_entropy_with_logits(
- pred_logits.float(), gt_score.float(), reduction='none')
- if self.reduction == 'sum':
- loss = loss.sum()
- elif self.reduction == 'mean':
- loss = loss.mean()
- return loss
- def forward(self, pred_logits, gt_score, gt_label):
- if self.cfg['cls_loss'] == 'vfl':
- return self.varifocalloss(pred_logits, gt_score, gt_label, self.alpha, self.gamma)
- elif self.cfg['cls_loss'] == 'bce':
- return self.binary_cross_entropy(pred_logits, gt_score)
- class RegressionLoss(nn.Module):
- def __init__(self, num_classes, reg_max, use_dfl):
- super(RegressionLoss, self).__init__()
- self.num_classes = num_classes
- self.reg_max = reg_max
- self.use_dfl = use_dfl
- def df_loss(self, pred_regs, target):
- gt_left = target.to(torch.long)
- gt_right = gt_left + 1
- weight_left = gt_right.to(torch.float) - target
- weight_right = 1 - weight_left
- # loss left
- loss_left = F.cross_entropy(
- pred_regs.view(-1, self.reg_max + 1),
- gt_left.view(-1),
- reduction='none').view(gt_left.shape) * weight_left
- # loss right
- loss_right = F.cross_entropy(
- pred_regs.view(-1, self.reg_max + 1),
- gt_right.view(-1),
- reduction='none').view(gt_left.shape) * weight_right
- loss = (loss_left + loss_right).mean(-1, keepdim=True)
-
- return loss
- def forward(self, pred_regs, pred_boxs, anchors, gt_boxs, bbox_weight, fg_masks, strides):
- """
- Input:
- pred_regs: (Tensor) [BM, 4*(reg_max + 1)]
- pred_boxs: (Tensor) [BM, 4]
- anchors: (Tensor) [BM, 2]
- gt_boxs: (Tensor) [BM, 4]
- bbox_weight: (Tensor) [BM, 1]
- fg_masks: (Tensor) [BM,]
- strides: (Tensor) [BM, 1]
- """
- # select positive samples mask
- num_pos = fg_masks.sum()
- if num_pos > 0:
- pred_boxs_pos = pred_boxs[fg_masks]
- gt_boxs_pos = gt_boxs[fg_masks]
- # iou loss
- ious = bbox_iou(pred_boxs_pos,
- gt_boxs_pos,
- xywh=False,
- CIoU=True)
- loss_iou = (1.0 - ious) * bbox_weight
-
- # dfl loss
- if self.use_dfl:
- pred_regs_pos = pred_regs[fg_masks]
- gt_boxs_s = gt_boxs / strides
- anchors_s = anchors / strides
- gt_ltrb_s = bbox2dist(anchors_s, gt_boxs_s, self.reg_max)
- gt_ltrb_s_pos = gt_ltrb_s[fg_masks]
- loss_dfl = self.df_loss(pred_regs_pos, gt_ltrb_s_pos)
- loss_dfl *= bbox_weight
- else:
- loss_dfl = pred_regs.sum() * 0.
- else:
- loss_iou = pred_regs.sum() * 0.
- loss_dfl = pred_regs.sum() * 0.
- return loss_iou, loss_dfl
- def build_criterion(cfg, device, num_classes):
- criterion = Criterion(
- cfg=cfg,
- device=device,
- num_classes=num_classes
- )
- return criterion
- if __name__ == "__main__":
- pass
|