yolov2_config.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. # YOLOv2 Config
  2. yolov2_cfg = {
  3. # input
  4. 'trans_type': 'ssd',
  5. 'multi_scale': [0.5, 1.5],
  6. # model
  7. 'backbone': 'darknet19',
  8. 'pretrained': True,
  9. 'stride': 32, # P5
  10. # neck
  11. 'neck': 'sppf',
  12. 'expand_ratio': 0.5,
  13. 'pooling_size': 5,
  14. 'neck_act': 'lrelu',
  15. 'neck_norm': 'BN',
  16. 'neck_depthwise': False,
  17. # head
  18. 'head': 'decoupled_head',
  19. 'head_act': 'lrelu',
  20. 'head_norm': 'BN',
  21. 'num_cls_head': 2,
  22. 'num_reg_head': 2,
  23. 'head_depthwise': False,
  24. 'anchor_size': [[17, 25],
  25. [55, 75],
  26. [92, 206],
  27. [202, 21],
  28. [289, 311]], # 416
  29. # matcher
  30. 'iou_thresh': 0.5,
  31. # loss weight
  32. 'loss_obj_weight': 1.0,
  33. 'loss_cls_weight': 1.0,
  34. 'loss_box_weight': 5.0,
  35. # training configuration
  36. 'no_aug_epoch': -1,
  37. # optimizer
  38. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  39. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  40. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  41. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  42. # model EMA
  43. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  44. 'ema_tau': 2000,
  45. # lr schedule
  46. 'scheduler': 'linear',
  47. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  48. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  49. 'warmup_momentum': 0.8,
  50. 'warmup_bias_lr': 0.1,
  51. }