yolov5.py 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. import torch
  2. import torch.nn as nn
  3. from .yolov5_backbone import build_backbone
  4. from .yolov5_pafpn import build_fpn
  5. from .yolov5_head import build_head
  6. from utils.misc import multiclass_nms
  7. class YOLOv5(nn.Module):
  8. def __init__(self,
  9. cfg,
  10. device,
  11. num_classes = 20,
  12. conf_thresh = 0.05,
  13. nms_thresh = 0.6,
  14. trainable = False,
  15. topk = 1000,
  16. deploy = False,
  17. nms_class_agnostic = False):
  18. super(YOLOv5, self).__init__()
  19. # ---------------------- Basic Parameters ----------------------
  20. self.cfg = cfg
  21. self.device = device
  22. self.stride = cfg['stride']
  23. self.num_classes = num_classes
  24. self.trainable = trainable
  25. self.conf_thresh = conf_thresh
  26. self.nms_thresh = nms_thresh
  27. self.topk = topk
  28. self.deploy = deploy
  29. self.nms_class_agnostic = nms_class_agnostic
  30. # ------------------- Anchor box -------------------
  31. self.num_levels = 3
  32. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  33. self.anchor_size = torch.as_tensor(
  34. cfg['anchor_size']
  35. ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  36. # ------------------- Network Structure -------------------
  37. ## Backbone
  38. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  39. ## FPN
  40. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  41. self.head_dim = self.fpn.out_dim
  42. ## Head
  43. self.non_shared_heads = nn.ModuleList(
  44. [build_head(cfg, head_dim, head_dim, num_classes)
  45. for head_dim in self.head_dim
  46. ])
  47. ## Pred
  48. self.obj_preds = nn.ModuleList(
  49. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  50. for head in self.non_shared_heads
  51. ])
  52. self.cls_preds = nn.ModuleList(
  53. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  54. for head in self.non_shared_heads
  55. ])
  56. self.reg_preds = nn.ModuleList(
  57. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  58. for head in self.non_shared_heads
  59. ])
  60. # ---------------------- Basic Functions ----------------------
  61. ## generate anchor points
  62. def generate_anchors(self, level, fmp_size):
  63. fmp_h, fmp_w = fmp_size
  64. # [KA, 2]
  65. anchor_size = self.anchor_size[level]
  66. # generate grid cells
  67. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  68. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  69. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  70. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  71. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  72. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  73. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  74. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  75. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  76. return anchors
  77. ## post-process
  78. def post_process(self, obj_preds, cls_preds, box_preds):
  79. """
  80. Input:
  81. obj_preds: List(Tensor) [[H x W x A, 1], ...]
  82. cls_preds: List(Tensor) [[H x W x A, C], ...]
  83. box_preds: List(Tensor) [[H x W x A, 4], ...]
  84. anchors: List(Tensor) [[H x W x A, 2], ...]
  85. """
  86. all_scores = []
  87. all_labels = []
  88. all_bboxes = []
  89. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  90. # (H x W x KA x C,)
  91. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  92. # Keep top k top scoring indices only.
  93. num_topk = min(self.topk, box_pred_i.size(0))
  94. # torch.sort is actually faster than .topk (at least on GPUs)
  95. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  96. topk_scores = predicted_prob[:num_topk]
  97. topk_idxs = topk_idxs[:num_topk]
  98. # filter out the proposals with low confidence score
  99. keep_idxs = topk_scores > self.conf_thresh
  100. scores = topk_scores[keep_idxs]
  101. topk_idxs = topk_idxs[keep_idxs]
  102. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  103. labels = topk_idxs % self.num_classes
  104. bboxes = box_pred_i[anchor_idxs]
  105. all_scores.append(scores)
  106. all_labels.append(labels)
  107. all_bboxes.append(bboxes)
  108. scores = torch.cat(all_scores)
  109. labels = torch.cat(all_labels)
  110. bboxes = torch.cat(all_bboxes)
  111. # to cpu & numpy
  112. scores = scores.cpu().numpy()
  113. labels = labels.cpu().numpy()
  114. bboxes = bboxes.cpu().numpy()
  115. # nms
  116. scores, labels, bboxes = multiclass_nms(
  117. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  118. return bboxes, scores, labels
  119. # ---------------------- Main Process for Inference ----------------------
  120. @torch.no_grad()
  121. def inference_single_image(self, x):
  122. # backbone
  123. pyramid_feats = self.backbone(x)
  124. # fpn
  125. pyramid_feats = self.fpn(pyramid_feats)
  126. # non-shared heads
  127. all_anchors = []
  128. all_obj_preds = []
  129. all_cls_preds = []
  130. all_box_preds = []
  131. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  132. cls_feat, reg_feat = head(feat)
  133. # [1, C, H, W]
  134. obj_pred = self.obj_preds[level](reg_feat)
  135. cls_pred = self.cls_preds[level](cls_feat)
  136. reg_pred = self.reg_preds[level](reg_feat)
  137. # anchors: [M, 4]
  138. fmp_size = cls_pred.shape[-2:]
  139. anchors = self.generate_anchors(level, fmp_size)
  140. # [1, C, H, W] -> [H, W, C] -> [M, C]
  141. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  142. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  143. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  144. # decode bbox
  145. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  146. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  147. pred_x1y1 = ctr_pred - wh_pred * 0.5
  148. pred_x2y2 = ctr_pred + wh_pred * 0.5
  149. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  150. all_obj_preds.append(obj_pred)
  151. all_cls_preds.append(cls_pred)
  152. all_box_preds.append(box_pred)
  153. all_anchors.append(anchors)
  154. if self.deploy:
  155. obj_preds = torch.cat(all_obj_preds, dim=0)
  156. cls_preds = torch.cat(all_cls_preds, dim=0)
  157. box_preds = torch.cat(all_box_preds, dim=0)
  158. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  159. bboxes = box_preds
  160. # [n_anchors_all, 4 + C]
  161. outputs = torch.cat([bboxes, scores], dim=-1)
  162. return outputs
  163. else:
  164. # post process
  165. bboxes, scores, labels = self.post_process(
  166. all_obj_preds, all_cls_preds, all_box_preds)
  167. return bboxes, scores, labels
  168. # ---------------------- Main Process for Training ----------------------
  169. def forward(self, x):
  170. if not self.trainable:
  171. return self.inference_single_image(x)
  172. else:
  173. # backbone
  174. pyramid_feats = self.backbone(x)
  175. # fpn
  176. pyramid_feats = self.fpn(pyramid_feats)
  177. # non-shared heads
  178. all_fmp_sizes = []
  179. all_obj_preds = []
  180. all_cls_preds = []
  181. all_box_preds = []
  182. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  183. cls_feat, reg_feat = head(feat)
  184. # [B, C, H, W]
  185. obj_pred = self.obj_preds[level](reg_feat)
  186. cls_pred = self.cls_preds[level](cls_feat)
  187. reg_pred = self.reg_preds[level](reg_feat)
  188. B, _, H, W = cls_pred.size()
  189. fmp_size = [H, W]
  190. # generate anchor boxes: [M, 4]
  191. anchors = self.generate_anchors(level, fmp_size)
  192. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  193. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  194. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  195. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  196. # decode bbox
  197. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  198. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  199. pred_x1y1 = ctr_pred - wh_pred * 0.5
  200. pred_x2y2 = ctr_pred + wh_pred * 0.5
  201. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  202. all_obj_preds.append(obj_pred)
  203. all_cls_preds.append(cls_pred)
  204. all_box_preds.append(box_pred)
  205. all_fmp_sizes.append(fmp_size)
  206. # output dict
  207. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  208. "pred_cls": all_cls_preds, # List [B, M, C]
  209. "pred_box": all_box_preds, # List [B, M, 4]
  210. 'fmp_sizes': all_fmp_sizes, # List
  211. 'strides': self.stride, # List
  212. }
  213. return outputs