engine.py 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8-style Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # path to save model
  34. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  35. os.makedirs(self.path_to_save, exist_ok=True)
  36. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  37. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  38. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  39. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  40. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  41. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  42. self.data_cfg = data_cfg
  43. self.model_cfg = model_cfg
  44. self.trans_cfg = trans_cfg
  45. # ---------------------------- Build Transform ----------------------------
  46. self.train_transform, self.trans_cfg = build_transform(
  47. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  48. self.val_transform, _ = build_transform(
  49. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  50. # ---------------------------- Build Dataset & Dataloader ----------------------------
  51. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  52. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  53. # ---------------------------- Build Evaluator ----------------------------
  54. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  55. # ---------------------------- Build Grad. Scaler ----------------------------
  56. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  57. # ---------------------------- Build Optimizer ----------------------------
  58. accumulate = max(1, round(64 / self.args.batch_size))
  59. print('Grad Accumulate: {}'.format(accumulate))
  60. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  61. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  62. # ---------------------------- Build LR Scheduler ----------------------------
  63. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  64. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  65. if self.args.resume:
  66. self.lr_scheduler.step()
  67. # ---------------------------- Build Model-EMA ----------------------------
  68. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  69. print('Build ModelEMA ...')
  70. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  71. else:
  72. self.model_ema = None
  73. def train(self, model):
  74. for epoch in range(self.start_epoch, self.args.max_epoch):
  75. if self.args.distributed:
  76. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  77. # check second stage
  78. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  79. self.check_second_stage()
  80. # save model of the last mosaic epoch
  81. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  82. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  83. if not os.path.exists(checkpoint_path):
  84. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  85. torch.save({'model': model.state_dict(),
  86. 'mAP': round(self.evaluator.map*100, 1),
  87. 'optimizer': self.optimizer.state_dict(),
  88. 'epoch': self.epoch,
  89. 'args': self.args},
  90. checkpoint_path)
  91. # train one epoch
  92. self.epoch = epoch
  93. self.train_one_epoch(model)
  94. # eval one epoch
  95. if self.heavy_eval:
  96. model_eval = model.module if self.args.distributed else model
  97. self.eval(model_eval)
  98. else:
  99. model_eval = model.module if self.args.distributed else model
  100. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  101. self.eval(model_eval)
  102. def eval(self, model):
  103. # chech model
  104. model_eval = model if self.model_ema is None else self.model_ema.ema
  105. if distributed_utils.is_main_process():
  106. # check evaluator
  107. if self.evaluator is None:
  108. print('No evaluator ... save model and go on training.')
  109. print('Saving state, epoch: {}'.format(self.epoch + 1))
  110. weight_name = '{}_no_eval.pth'.format(self.args.model)
  111. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  112. torch.save({'model': model_eval.state_dict(),
  113. 'mAP': -1.,
  114. 'optimizer': self.optimizer.state_dict(),
  115. 'epoch': self.epoch,
  116. 'args': self.args},
  117. checkpoint_path)
  118. else:
  119. print('eval ...')
  120. # set eval mode
  121. model_eval.trainable = False
  122. model_eval.eval()
  123. # evaluate
  124. with torch.no_grad():
  125. self.evaluator.evaluate(model_eval)
  126. # save model
  127. cur_map = self.evaluator.map
  128. if cur_map > self.best_map:
  129. # update best-map
  130. self.best_map = cur_map
  131. # save model
  132. print('Saving state, epoch:', self.epoch + 1)
  133. weight_name = '{}_best.pth'.format(self.args.model)
  134. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  135. torch.save({'model': model_eval.state_dict(),
  136. 'mAP': round(self.best_map*100, 1),
  137. 'optimizer': self.optimizer.state_dict(),
  138. 'epoch': self.epoch,
  139. 'args': self.args},
  140. checkpoint_path)
  141. # set train mode.
  142. model_eval.trainable = True
  143. model_eval.train()
  144. if self.args.distributed:
  145. # wait for all processes to synchronize
  146. dist.barrier()
  147. def train_one_epoch(self, model):
  148. # basic parameters
  149. epoch_size = len(self.train_loader)
  150. img_size = self.args.img_size
  151. t0 = time.time()
  152. nw = epoch_size * self.args.wp_epoch
  153. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  154. # train one epoch
  155. for iter_i, (images, targets) in enumerate(self.train_loader):
  156. ni = iter_i + self.epoch * epoch_size
  157. # Warmup
  158. if ni <= nw:
  159. xi = [0, nw] # x interp
  160. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  161. for j, x in enumerate(self.optimizer.param_groups):
  162. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  163. x['lr'] = np.interp(
  164. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  165. if 'momentum' in x:
  166. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  167. # to device
  168. images = images.to(self.device, non_blocking=True).float() / 255.
  169. # Multi scale
  170. if self.args.multi_scale:
  171. images, targets, img_size = self.rescale_image_targets(
  172. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  173. else:
  174. targets = self.refine_targets(targets, self.args.min_box_size)
  175. # visualize train targets
  176. if self.args.vis_tgt:
  177. vis_data(images*255, targets)
  178. # inference
  179. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  180. outputs = model(images)
  181. # loss
  182. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  183. losses = loss_dict['losses']
  184. losses *= images.shape[0] # loss * bs
  185. # reduce
  186. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  187. # gradient averaged between devices in DDP mode
  188. losses *= distributed_utils.get_world_size()
  189. # backward
  190. self.scaler.scale(losses).backward()
  191. # Optimize
  192. if ni - self.last_opt_step >= accumulate:
  193. if self.clip_grad > 0:
  194. # unscale gradients
  195. self.scaler.unscale_(self.optimizer)
  196. # clip gradients
  197. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  198. # optimizer.step
  199. self.scaler.step(self.optimizer)
  200. self.scaler.update()
  201. self.optimizer.zero_grad()
  202. # ema
  203. if self.model_ema is not None:
  204. self.model_ema.update(model)
  205. self.last_opt_step = ni
  206. # display
  207. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  208. t1 = time.time()
  209. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  210. # basic infor
  211. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  212. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  213. log += '[lr: {:.6f}]'.format(cur_lr[2])
  214. # loss infor
  215. for k in loss_dict_reduced.keys():
  216. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  217. # other infor
  218. log += '[time: {:.2f}]'.format(t1 - t0)
  219. log += '[size: {}]'.format(img_size)
  220. # print log infor
  221. print(log, flush=True)
  222. t0 = time.time()
  223. self.lr_scheduler.step()
  224. def check_second_stage(self):
  225. # set second stage
  226. print('============== Second stage of Training ==============')
  227. self.second_stage = True
  228. # close mosaic augmentation
  229. if self.train_loader.dataset.mosaic_prob > 0.:
  230. print(' - Close < Mosaic Augmentation > ...')
  231. self.train_loader.dataset.mosaic_prob = 0.
  232. self.heavy_eval = True
  233. # close mixup augmentation
  234. if self.train_loader.dataset.mixup_prob > 0.:
  235. print(' - Close < Mixup Augmentation > ...')
  236. self.train_loader.dataset.mixup_prob = 0.
  237. self.heavy_eval = True
  238. # close rotation augmentation
  239. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  240. print(' - Close < degress of rotation > ...')
  241. self.trans_cfg['degrees'] = 0.0
  242. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  243. print(' - Close < shear of rotation >...')
  244. self.trans_cfg['shear'] = 0.0
  245. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  246. print(' - Close < perspective of rotation > ...')
  247. self.trans_cfg['perspective'] = 0.0
  248. # close random affine
  249. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  250. print(' - Close < translate of affine > ...')
  251. self.trans_cfg['translate'] = 0.0
  252. if 'scale' in self.trans_cfg.keys():
  253. print(' - Close < scale of affine >...')
  254. self.trans_cfg['scale'] = [1.0, 1.0]
  255. # build a new transform for second stage
  256. print(' - Rebuild transforms ...')
  257. self.train_transform, self.trans_cfg = build_transform(
  258. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  259. self.train_loader.dataset.transform = self.train_transform
  260. def refine_targets(self, targets, min_box_size):
  261. # rescale targets
  262. for tgt in targets:
  263. boxes = tgt["boxes"].clone()
  264. labels = tgt["labels"].clone()
  265. # refine tgt
  266. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  267. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  268. keep = (min_tgt_size >= min_box_size)
  269. tgt["boxes"] = boxes[keep]
  270. tgt["labels"] = labels[keep]
  271. return targets
  272. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  273. """
  274. Deployed for Multi scale trick.
  275. """
  276. if isinstance(stride, int):
  277. max_stride = stride
  278. elif isinstance(stride, list):
  279. max_stride = max(stride)
  280. # During training phase, the shape of input image is square.
  281. old_img_size = images.shape[-1]
  282. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  283. new_img_size = new_img_size // max_stride * max_stride # size
  284. if new_img_size / old_img_size != 1:
  285. # interpolate
  286. images = torch.nn.functional.interpolate(
  287. input=images,
  288. size=new_img_size,
  289. mode='bilinear',
  290. align_corners=False)
  291. # rescale targets
  292. for tgt in targets:
  293. boxes = tgt["boxes"].clone()
  294. labels = tgt["labels"].clone()
  295. boxes = torch.clamp(boxes, 0, old_img_size)
  296. # rescale box
  297. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  298. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  299. # refine tgt
  300. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  301. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  302. keep = (min_tgt_size >= min_box_size)
  303. tgt["boxes"] = boxes[keep]
  304. tgt["labels"] = labels[keep]
  305. return images, targets, new_img_size
  306. # YOLOX-syle Trainer
  307. class YoloxTrainer(object):
  308. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  309. # ------------------- basic parameters -------------------
  310. self.args = args
  311. self.epoch = 0
  312. self.best_map = -1.
  313. self.device = device
  314. self.criterion = criterion
  315. self.world_size = world_size
  316. self.grad_accumulate = args.grad_accumulate
  317. self.no_aug_epoch = args.no_aug_epoch
  318. self.heavy_eval = False
  319. self.second_stage = False
  320. # path to save model
  321. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  322. os.makedirs(self.path_to_save, exist_ok=True)
  323. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  324. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  325. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  326. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  327. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  328. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  329. self.data_cfg = data_cfg
  330. self.model_cfg = model_cfg
  331. self.trans_cfg = trans_cfg
  332. # ---------------------------- Build Transform ----------------------------
  333. self.train_transform, self.trans_cfg = build_transform(
  334. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  335. self.val_transform, _ = build_transform(
  336. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  337. # ---------------------------- Build Dataset & Dataloader ----------------------------
  338. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  339. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  340. # ---------------------------- Build Evaluator ----------------------------
  341. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  342. # ---------------------------- Build Grad. Scaler ----------------------------
  343. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  344. # ---------------------------- Build Optimizer ----------------------------
  345. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  346. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  347. # ---------------------------- Build LR Scheduler ----------------------------
  348. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  349. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  350. if self.args.resume:
  351. self.lr_scheduler.step()
  352. # ---------------------------- Build Model-EMA ----------------------------
  353. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  354. print('Build ModelEMA ...')
  355. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  356. else:
  357. self.model_ema = None
  358. def train(self, model):
  359. for epoch in range(self.start_epoch, self.args.max_epoch):
  360. if self.args.distributed:
  361. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  362. # check second stage
  363. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  364. self.check_second_stage()
  365. # save model of the last mosaic epoch
  366. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  367. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  368. if not os.path.exists(checkpoint_path):
  369. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  370. torch.save({'model': model.state_dict(),
  371. 'mAP': round(self.evaluator.map*100, 1),
  372. 'optimizer': self.optimizer.state_dict(),
  373. 'epoch': self.epoch,
  374. 'args': self.args},
  375. checkpoint_path)
  376. # train one epoch
  377. self.epoch = epoch
  378. self.train_one_epoch(model)
  379. # eval one epoch
  380. if self.heavy_eval:
  381. model_eval = model.module if self.args.distributed else model
  382. self.eval(model_eval)
  383. else:
  384. model_eval = model.module if self.args.distributed else model
  385. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  386. self.eval(model_eval)
  387. def eval(self, model):
  388. # chech model
  389. model_eval = model if self.model_ema is None else self.model_ema.ema
  390. if distributed_utils.is_main_process():
  391. # check evaluator
  392. if self.evaluator is None:
  393. print('No evaluator ... save model and go on training.')
  394. print('Saving state, epoch: {}'.format(self.epoch + 1))
  395. weight_name = '{}_no_eval.pth'.format(self.args.model)
  396. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  397. torch.save({'model': model_eval.state_dict(),
  398. 'mAP': -1.,
  399. 'optimizer': self.optimizer.state_dict(),
  400. 'epoch': self.epoch,
  401. 'args': self.args},
  402. checkpoint_path)
  403. else:
  404. print('eval ...')
  405. # set eval mode
  406. model_eval.trainable = False
  407. model_eval.eval()
  408. # evaluate
  409. with torch.no_grad():
  410. self.evaluator.evaluate(model_eval)
  411. # save model
  412. cur_map = self.evaluator.map
  413. if cur_map > self.best_map:
  414. # update best-map
  415. self.best_map = cur_map
  416. # save model
  417. print('Saving state, epoch:', self.epoch + 1)
  418. weight_name = '{}_best.pth'.format(self.args.model)
  419. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  420. torch.save({'model': model_eval.state_dict(),
  421. 'mAP': round(self.best_map*100, 1),
  422. 'optimizer': self.optimizer.state_dict(),
  423. 'epoch': self.epoch,
  424. 'args': self.args},
  425. checkpoint_path)
  426. # set train mode.
  427. model_eval.trainable = True
  428. model_eval.train()
  429. if self.args.distributed:
  430. # wait for all processes to synchronize
  431. dist.barrier()
  432. def train_one_epoch(self, model):
  433. # basic parameters
  434. epoch_size = len(self.train_loader)
  435. img_size = self.args.img_size
  436. t0 = time.time()
  437. nw = epoch_size * self.args.wp_epoch
  438. # Train one epoch
  439. for iter_i, (images, targets) in enumerate(self.train_loader):
  440. ni = iter_i + self.epoch * epoch_size
  441. # Warmup
  442. if ni <= nw:
  443. xi = [0, nw] # x interp
  444. for j, x in enumerate(self.optimizer.param_groups):
  445. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  446. x['lr'] = np.interp(
  447. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  448. if 'momentum' in x:
  449. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  450. # To device
  451. images = images.to(self.device, non_blocking=True).float() / 255.
  452. # Multi scale
  453. if self.args.multi_scale and ni % 10 == 0:
  454. images, targets, img_size = self.rescale_image_targets(
  455. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  456. else:
  457. targets = self.refine_targets(targets, self.args.min_box_size)
  458. # Visualize train targets
  459. if self.args.vis_tgt:
  460. vis_data(images*255, targets)
  461. # Inference
  462. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  463. outputs = model(images)
  464. # Compute loss
  465. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  466. losses = loss_dict['losses']
  467. # Grad Accu
  468. if self.grad_accumulate > 1:
  469. losses /= self.grad_accumulate
  470. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  471. # Backward
  472. self.scaler.scale(losses).backward()
  473. # Optimize
  474. if ni % self.grad_accumulate == 0:
  475. self.scaler.step(self.optimizer)
  476. self.scaler.update()
  477. self.optimizer.zero_grad()
  478. # ema
  479. if self.model_ema is not None:
  480. self.model_ema.update(model)
  481. # Logs
  482. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  483. t1 = time.time()
  484. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  485. # basic infor
  486. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  487. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  488. log += '[lr: {:.6f}]'.format(cur_lr[2])
  489. # loss infor
  490. for k in loss_dict_reduced.keys():
  491. loss_val = loss_dict_reduced[k]
  492. if k == 'losses':
  493. loss_val *= self.grad_accumulate
  494. log += '[{}: {:.2f}]'.format(k, loss_val)
  495. # other infor
  496. log += '[time: {:.2f}]'.format(t1 - t0)
  497. log += '[size: {}]'.format(img_size)
  498. # print log infor
  499. print(log, flush=True)
  500. t0 = time.time()
  501. # LR Schedule
  502. if not self.second_stage:
  503. self.lr_scheduler.step()
  504. def check_second_stage(self):
  505. # set second stage
  506. print('============== Second stage of Training ==============')
  507. self.second_stage = True
  508. # close mosaic augmentation
  509. if self.train_loader.dataset.mosaic_prob > 0.:
  510. print(' - Close < Mosaic Augmentation > ...')
  511. self.train_loader.dataset.mosaic_prob = 0.
  512. self.heavy_eval = True
  513. # close mixup augmentation
  514. if self.train_loader.dataset.mixup_prob > 0.:
  515. print(' - Close < Mixup Augmentation > ...')
  516. self.train_loader.dataset.mixup_prob = 0.
  517. self.heavy_eval = True
  518. # close rotation augmentation
  519. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  520. print(' - Close < degress of rotation > ...')
  521. self.trans_cfg['degrees'] = 0.0
  522. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  523. print(' - Close < shear of rotation >...')
  524. self.trans_cfg['shear'] = 0.0
  525. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  526. print(' - Close < perspective of rotation > ...')
  527. self.trans_cfg['perspective'] = 0.0
  528. # close random affine
  529. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  530. print(' - Close < translate of affine > ...')
  531. self.trans_cfg['translate'] = 0.0
  532. if 'scale' in self.trans_cfg.keys():
  533. print(' - Close < scale of affine >...')
  534. self.trans_cfg['scale'] = [1.0, 1.0]
  535. # build a new transform for second stage
  536. print(' - Rebuild transforms ...')
  537. self.train_transform, self.trans_cfg = build_transform(
  538. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  539. self.train_loader.dataset.transform = self.train_transform
  540. def refine_targets(self, targets, min_box_size):
  541. # rescale targets
  542. for tgt in targets:
  543. boxes = tgt["boxes"].clone()
  544. labels = tgt["labels"].clone()
  545. # refine tgt
  546. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  547. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  548. keep = (min_tgt_size >= min_box_size)
  549. tgt["boxes"] = boxes[keep]
  550. tgt["labels"] = labels[keep]
  551. return targets
  552. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  553. """
  554. Deployed for Multi scale trick.
  555. """
  556. if isinstance(stride, int):
  557. max_stride = stride
  558. elif isinstance(stride, list):
  559. max_stride = max(stride)
  560. # During training phase, the shape of input image is square.
  561. old_img_size = images.shape[-1]
  562. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  563. new_img_size = new_img_size // max_stride * max_stride # size
  564. if new_img_size / old_img_size != 1:
  565. # interpolate
  566. images = torch.nn.functional.interpolate(
  567. input=images,
  568. size=new_img_size,
  569. mode='bilinear',
  570. align_corners=False)
  571. # rescale targets
  572. for tgt in targets:
  573. boxes = tgt["boxes"].clone()
  574. labels = tgt["labels"].clone()
  575. boxes = torch.clamp(boxes, 0, old_img_size)
  576. # rescale box
  577. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  578. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  579. # refine tgt
  580. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  581. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  582. keep = (min_tgt_size >= min_box_size)
  583. tgt["boxes"] = boxes[keep]
  584. tgt["labels"] = labels[keep]
  585. return images, targets, new_img_size
  586. # RTMDet-syle Trainer
  587. class RTMTrainer(object):
  588. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  589. # ------------------- basic parameters -------------------
  590. self.args = args
  591. self.epoch = 0
  592. self.best_map = -1.
  593. self.device = device
  594. self.criterion = criterion
  595. self.world_size = world_size
  596. self.grad_accumulate = args.grad_accumulate
  597. self.no_aug_epoch = args.no_aug_epoch
  598. self.clip_grad = 35
  599. self.heavy_eval = False
  600. self.second_stage = False
  601. # path to save model
  602. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  603. os.makedirs(self.path_to_save, exist_ok=True)
  604. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  605. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  606. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  607. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  608. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  609. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  610. self.data_cfg = data_cfg
  611. self.model_cfg = model_cfg
  612. self.trans_cfg = trans_cfg
  613. # ---------------------------- Build Transform ----------------------------
  614. self.train_transform, self.trans_cfg = build_transform(
  615. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  616. self.val_transform, _ = build_transform(
  617. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  618. # ---------------------------- Build Dataset & Dataloader ----------------------------
  619. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  620. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  621. # ---------------------------- Build Evaluator ----------------------------
  622. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  623. # ---------------------------- Build Grad. Scaler ----------------------------
  624. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  625. # ---------------------------- Build Optimizer ----------------------------
  626. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  627. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  628. # ---------------------------- Build LR Scheduler ----------------------------
  629. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  630. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  631. if self.args.resume:
  632. self.lr_scheduler.step()
  633. # ---------------------------- Build Model-EMA ----------------------------
  634. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  635. print('Build ModelEMA ...')
  636. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  637. else:
  638. self.model_ema = None
  639. def train(self, model):
  640. for epoch in range(self.start_epoch, self.args.max_epoch):
  641. if self.args.distributed:
  642. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  643. # check second stage
  644. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  645. self.check_second_stage()
  646. # save model of the last mosaic epoch
  647. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  648. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  649. if not os.path.exists(checkpoint_path):
  650. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  651. torch.save({'model': model.state_dict(),
  652. 'mAP': round(self.evaluator.map*100, 1),
  653. 'optimizer': self.optimizer.state_dict(),
  654. 'epoch': self.epoch,
  655. 'args': self.args},
  656. checkpoint_path)
  657. # train one epoch
  658. self.epoch = epoch
  659. self.train_one_epoch(model)
  660. # eval one epoch
  661. if self.heavy_eval:
  662. model_eval = model.module if self.args.distributed else model
  663. self.eval(model_eval)
  664. else:
  665. model_eval = model.module if self.args.distributed else model
  666. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  667. self.eval(model_eval)
  668. def eval(self, model):
  669. # chech model
  670. model_eval = model if self.model_ema is None else self.model_ema.ema
  671. if distributed_utils.is_main_process():
  672. # check evaluator
  673. if self.evaluator is None:
  674. print('No evaluator ... save model and go on training.')
  675. print('Saving state, epoch: {}'.format(self.epoch + 1))
  676. weight_name = '{}_no_eval.pth'.format(self.args.model)
  677. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  678. torch.save({'model': model_eval.state_dict(),
  679. 'mAP': -1.,
  680. 'optimizer': self.optimizer.state_dict(),
  681. 'epoch': self.epoch,
  682. 'args': self.args},
  683. checkpoint_path)
  684. else:
  685. print('eval ...')
  686. # set eval mode
  687. model_eval.trainable = False
  688. model_eval.eval()
  689. # evaluate
  690. with torch.no_grad():
  691. self.evaluator.evaluate(model_eval)
  692. # save model
  693. cur_map = self.evaluator.map
  694. if cur_map > self.best_map:
  695. # update best-map
  696. self.best_map = cur_map
  697. # save model
  698. print('Saving state, epoch:', self.epoch + 1)
  699. weight_name = '{}_best.pth'.format(self.args.model)
  700. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  701. torch.save({'model': model_eval.state_dict(),
  702. 'mAP': round(self.best_map*100, 1),
  703. 'optimizer': self.optimizer.state_dict(),
  704. 'epoch': self.epoch,
  705. 'args': self.args},
  706. checkpoint_path)
  707. # set train mode.
  708. model_eval.trainable = True
  709. model_eval.train()
  710. if self.args.distributed:
  711. # wait for all processes to synchronize
  712. dist.barrier()
  713. def train_one_epoch(self, model):
  714. # basic parameters
  715. epoch_size = len(self.train_loader)
  716. img_size = self.args.img_size
  717. t0 = time.time()
  718. nw = epoch_size * self.args.wp_epoch
  719. # Train one epoch
  720. for iter_i, (images, targets) in enumerate(self.train_loader):
  721. ni = iter_i + self.epoch * epoch_size
  722. # Warmup
  723. if ni <= nw:
  724. xi = [0, nw] # x interp
  725. for j, x in enumerate(self.optimizer.param_groups):
  726. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  727. x['lr'] = np.interp(
  728. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  729. if 'momentum' in x:
  730. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  731. # To device
  732. images = images.to(self.device, non_blocking=True).float() / 255.
  733. # Multi scale
  734. if self.args.multi_scale:
  735. images, targets, img_size = self.rescale_image_targets(
  736. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  737. else:
  738. targets = self.refine_targets(targets, self.args.min_box_size)
  739. # Visualize train targets
  740. if self.args.vis_tgt:
  741. vis_data(images*255, targets)
  742. # Inference
  743. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  744. outputs = model(images)
  745. # Compute loss
  746. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  747. losses = loss_dict['losses']
  748. # Grad Accumulate
  749. if self.grad_accumulate > 1:
  750. losses /= self.grad_accumulate
  751. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  752. # Backward
  753. self.scaler.scale(losses).backward()
  754. # Optimize
  755. if ni % self.grad_accumulate == 0:
  756. if self.clip_grad > 0:
  757. # unscale gradients
  758. self.scaler.unscale_(self.optimizer)
  759. # clip gradients
  760. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  761. # optimizer.step
  762. self.scaler.step(self.optimizer)
  763. self.scaler.update()
  764. self.optimizer.zero_grad()
  765. # ema
  766. if self.model_ema is not None:
  767. self.model_ema.update(model)
  768. # Logs
  769. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  770. t1 = time.time()
  771. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  772. # basic infor
  773. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  774. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  775. log += '[lr: {:.6f}]'.format(cur_lr[2])
  776. # loss infor
  777. for k in loss_dict_reduced.keys():
  778. loss_val = loss_dict_reduced[k]
  779. if k == 'losses':
  780. loss_val *= self.grad_accumulate
  781. log += '[{}: {:.2f}]'.format(k, loss_val)
  782. # other infor
  783. log += '[time: {:.2f}]'.format(t1 - t0)
  784. log += '[size: {}]'.format(img_size)
  785. # print log infor
  786. print(log, flush=True)
  787. t0 = time.time()
  788. # LR Schedule
  789. if not self.second_stage:
  790. self.lr_scheduler.step()
  791. def check_second_stage(self):
  792. # set second stage
  793. print('============== Second stage of Training ==============')
  794. self.second_stage = True
  795. # close mosaic augmentation
  796. if self.train_loader.dataset.mosaic_prob > 0.:
  797. print(' - Close < Mosaic Augmentation > ...')
  798. self.train_loader.dataset.mosaic_prob = 0.
  799. self.heavy_eval = True
  800. # close mixup augmentation
  801. if self.train_loader.dataset.mixup_prob > 0.:
  802. print(' - Close < Mixup Augmentation > ...')
  803. self.train_loader.dataset.mixup_prob = 0.
  804. self.heavy_eval = True
  805. # close rotation augmentation
  806. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  807. print(' - Close < degress of rotation > ...')
  808. self.trans_cfg['degrees'] = 0.0
  809. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  810. print(' - Close < shear of rotation >...')
  811. self.trans_cfg['shear'] = 0.0
  812. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  813. print(' - Close < perspective of rotation > ...')
  814. self.trans_cfg['perspective'] = 0.0
  815. # close random affine
  816. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  817. print(' - Weaken < translate of affine > ...')
  818. self.trans_cfg['translate'] = 0.2
  819. if 'scale' in self.trans_cfg.keys():
  820. print(' - Weaken < scale of affine >...')
  821. self.trans_cfg['scale'] = [0.5, 2.0]
  822. # build a new transform for second stage
  823. print(' - Rebuild transforms ...')
  824. self.train_transform, self.trans_cfg = build_transform(
  825. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  826. self.train_loader.dataset.transform = self.train_transform
  827. def refine_targets(self, targets, min_box_size):
  828. # rescale targets
  829. for tgt in targets:
  830. boxes = tgt["boxes"].clone()
  831. labels = tgt["labels"].clone()
  832. # refine tgt
  833. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  834. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  835. keep = (min_tgt_size >= min_box_size)
  836. tgt["boxes"] = boxes[keep]
  837. tgt["labels"] = labels[keep]
  838. return targets
  839. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  840. """
  841. Deployed for Multi scale trick.
  842. """
  843. if isinstance(stride, int):
  844. max_stride = stride
  845. elif isinstance(stride, list):
  846. max_stride = max(stride)
  847. # During training phase, the shape of input image is square.
  848. old_img_size = images.shape[-1]
  849. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  850. new_img_size = new_img_size // max_stride * max_stride # size
  851. if new_img_size / old_img_size != 1:
  852. # interpolate
  853. images = torch.nn.functional.interpolate(
  854. input=images,
  855. size=new_img_size,
  856. mode='bilinear',
  857. align_corners=False)
  858. # rescale targets
  859. for tgt in targets:
  860. boxes = tgt["boxes"].clone()
  861. labels = tgt["labels"].clone()
  862. boxes = torch.clamp(boxes, 0, old_img_size)
  863. # rescale box
  864. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  865. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  866. # refine tgt
  867. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  868. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  869. keep = (min_tgt_size >= min_box_size)
  870. tgt["boxes"] = boxes[keep]
  871. tgt["labels"] = labels[keep]
  872. return images, targets, new_img_size
  873. # Trainer for DETR
  874. class DetrTrainer(object):
  875. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  876. # ------------------- basic parameters -------------------
  877. self.args = args
  878. self.epoch = 0
  879. self.best_map = -1.
  880. self.last_opt_step = 0
  881. self.no_aug_epoch = args.no_aug_epoch
  882. self.clip_grad = -1
  883. self.device = device
  884. self.criterion = criterion
  885. self.world_size = world_size
  886. self.second_stage = False
  887. self.heavy_eval = False
  888. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
  889. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  890. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  891. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  892. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  893. self.data_cfg = data_cfg
  894. self.model_cfg = model_cfg
  895. self.trans_cfg = trans_cfg
  896. # ---------------------------- Build Transform ----------------------------
  897. self.train_transform, self.trans_cfg = build_transform(
  898. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  899. self.val_transform, _ = build_transform(
  900. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  901. # ---------------------------- Build Dataset & Dataloader ----------------------------
  902. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  903. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  904. # ---------------------------- Build Evaluator ----------------------------
  905. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  906. # ---------------------------- Build Grad. Scaler ----------------------------
  907. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  908. # ---------------------------- Build Optimizer ----------------------------
  909. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  910. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  911. # ---------------------------- Build LR Scheduler ----------------------------
  912. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  913. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  914. if self.args.resume:
  915. self.lr_scheduler.step()
  916. # ---------------------------- Build Model-EMA ----------------------------
  917. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  918. print('Build ModelEMA ...')
  919. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  920. else:
  921. self.model_ema = None
  922. def check_second_stage(self):
  923. # set second stage
  924. print('============== Second stage of Training ==============')
  925. self.second_stage = True
  926. # close mosaic augmentation
  927. if self.train_loader.dataset.mosaic_prob > 0.:
  928. print(' - Close < Mosaic Augmentation > ...')
  929. self.train_loader.dataset.mosaic_prob = 0.
  930. self.heavy_eval = True
  931. # close mixup augmentation
  932. if self.train_loader.dataset.mixup_prob > 0.:
  933. print(' - Close < Mixup Augmentation > ...')
  934. self.train_loader.dataset.mixup_prob = 0.
  935. self.heavy_eval = True
  936. # close rotation augmentation
  937. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  938. print(' - Close < degress of rotation > ...')
  939. self.trans_cfg['degrees'] = 0.0
  940. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  941. print(' - Close < shear of rotation >...')
  942. self.trans_cfg['shear'] = 0.0
  943. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  944. print(' - Close < perspective of rotation > ...')
  945. self.trans_cfg['perspective'] = 0.0
  946. # build a new transform for second stage
  947. print(' - Rebuild transforms ...')
  948. self.train_transform, self.trans_cfg = build_transform(
  949. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  950. self.train_loader.dataset.transform = self.train_transform
  951. def train(self, model):
  952. for epoch in range(self.start_epoch, self.args.max_epoch):
  953. if self.args.distributed:
  954. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  955. # check second stage
  956. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  957. self.check_second_stage()
  958. # train one epoch
  959. self.epoch = epoch
  960. self.train_one_epoch(model)
  961. # eval one epoch
  962. if self.heavy_eval:
  963. model_eval = model.module if self.args.distributed else model
  964. self.eval(model_eval)
  965. else:
  966. model_eval = model.module if self.args.distributed else model
  967. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  968. self.eval(model_eval)
  969. def eval(self, model):
  970. # chech model
  971. model_eval = model if self.model_ema is None else self.model_ema.ema
  972. # path to save model
  973. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  974. os.makedirs(path_to_save, exist_ok=True)
  975. if distributed_utils.is_main_process():
  976. # check evaluator
  977. if self.evaluator is None:
  978. print('No evaluator ... save model and go on training.')
  979. print('Saving state, epoch: {}'.format(self.epoch + 1))
  980. weight_name = '{}_no_eval.pth'.format(self.args.model)
  981. checkpoint_path = os.path.join(path_to_save, weight_name)
  982. torch.save({'model': model_eval.state_dict(),
  983. 'mAP': -1.,
  984. 'optimizer': self.optimizer.state_dict(),
  985. 'epoch': self.epoch,
  986. 'args': self.args},
  987. checkpoint_path)
  988. else:
  989. print('eval ...')
  990. # set eval mode
  991. model_eval.trainable = False
  992. model_eval.eval()
  993. # evaluate
  994. with torch.no_grad():
  995. self.evaluator.evaluate(model_eval)
  996. # save model
  997. cur_map = self.evaluator.map
  998. if cur_map > self.best_map:
  999. # update best-map
  1000. self.best_map = cur_map
  1001. # save model
  1002. print('Saving state, epoch:', self.epoch + 1)
  1003. weight_name = '{}_best.pth'.format(self.args.model)
  1004. checkpoint_path = os.path.join(path_to_save, weight_name)
  1005. torch.save({'model': model_eval.state_dict(),
  1006. 'mAP': round(self.best_map*100, 1),
  1007. 'optimizer': self.optimizer.state_dict(),
  1008. 'epoch': self.epoch,
  1009. 'args': self.args},
  1010. checkpoint_path)
  1011. # set train mode.
  1012. model_eval.trainable = True
  1013. model_eval.train()
  1014. if self.args.distributed:
  1015. # wait for all processes to synchronize
  1016. dist.barrier()
  1017. def train_one_epoch(self, model):
  1018. # basic parameters
  1019. epoch_size = len(self.train_loader)
  1020. img_size = self.args.img_size
  1021. t0 = time.time()
  1022. nw = epoch_size * self.args.wp_epoch
  1023. # train one epoch
  1024. for iter_i, (images, targets) in enumerate(self.train_loader):
  1025. ni = iter_i + self.epoch * epoch_size
  1026. # Warmup
  1027. if ni <= nw:
  1028. xi = [0, nw] # x interp
  1029. for j, x in enumerate(self.optimizer.param_groups):
  1030. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1031. x['lr'] = np.interp(
  1032. ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1033. if 'momentum' in x:
  1034. x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
  1035. # To device
  1036. images = images.to(self.device, non_blocking=True).float() / 255.
  1037. # Multi scale
  1038. if self.args.multi_scale:
  1039. images, targets, img_size = self.rescale_image_targets(
  1040. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1041. else:
  1042. targets = self.refine_targets(targets, self.args.min_box_size, img_size)
  1043. # Visualize targets
  1044. if self.args.vis_tgt:
  1045. vis_data(images*255, targets)
  1046. # Inference
  1047. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1048. outputs = model(images)
  1049. # Compute loss
  1050. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  1051. losses = loss_dict['losses']
  1052. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1053. # Backward
  1054. self.scaler.scale(losses).backward()
  1055. # Optimize
  1056. if self.clip_grad > 0:
  1057. # unscale gradients
  1058. self.scaler.unscale_(self.optimizer)
  1059. # clip gradients
  1060. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1061. self.scaler.step(self.optimizer)
  1062. self.scaler.update()
  1063. self.optimizer.zero_grad()
  1064. # Model EMA
  1065. if self.model_ema is not None:
  1066. self.model_ema.update(model)
  1067. self.last_opt_step = ni
  1068. # Log
  1069. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1070. t1 = time.time()
  1071. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1072. # basic infor
  1073. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1074. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1075. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1076. # loss infor
  1077. for k in loss_dict_reduced.keys():
  1078. if self.args.vis_aux_loss:
  1079. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1080. else:
  1081. if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
  1082. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1083. # other infor
  1084. log += '[time: {:.2f}]'.format(t1 - t0)
  1085. log += '[size: {}]'.format(img_size)
  1086. # print log infor
  1087. print(log, flush=True)
  1088. t0 = time.time()
  1089. # LR Scheduler
  1090. self.lr_scheduler.step()
  1091. def refine_targets(self, targets, min_box_size, img_size):
  1092. # rescale targets
  1093. for tgt in targets:
  1094. boxes = tgt["boxes"]
  1095. labels = tgt["labels"]
  1096. # refine tgt
  1097. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1098. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1099. keep = (min_tgt_size >= min_box_size)
  1100. # xyxy -> cxcywh
  1101. new_boxes = torch.zeros_like(boxes)
  1102. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1103. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1104. # normalize
  1105. new_boxes /= img_size
  1106. del boxes
  1107. tgt["boxes"] = new_boxes[keep]
  1108. tgt["labels"] = labels[keep]
  1109. return targets
  1110. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1111. """
  1112. Deployed for Multi scale trick.
  1113. """
  1114. if isinstance(stride, int):
  1115. max_stride = stride
  1116. elif isinstance(stride, list):
  1117. max_stride = max(stride)
  1118. # During training phase, the shape of input image is square.
  1119. old_img_size = images.shape[-1]
  1120. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1121. new_img_size = new_img_size // max_stride * max_stride # size
  1122. if new_img_size / old_img_size != 1:
  1123. # interpolate
  1124. images = torch.nn.functional.interpolate(
  1125. input=images,
  1126. size=new_img_size,
  1127. mode='bilinear',
  1128. align_corners=False)
  1129. # rescale targets
  1130. for tgt in targets:
  1131. boxes = tgt["boxes"].clone()
  1132. labels = tgt["labels"].clone()
  1133. boxes = torch.clamp(boxes, 0, old_img_size)
  1134. # rescale box
  1135. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1136. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1137. # refine tgt
  1138. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1139. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1140. keep = (min_tgt_size >= min_box_size)
  1141. # xyxy -> cxcywh
  1142. new_boxes = torch.zeros_like(boxes)
  1143. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1144. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1145. # normalize
  1146. new_boxes /= new_img_size
  1147. del boxes
  1148. tgt["boxes"] = new_boxes[keep]
  1149. tgt["labels"] = labels[keep]
  1150. return images, targets, new_img_size
  1151. # Build Trainer
  1152. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1153. if model_cfg['trainer_type'] == 'yolov8':
  1154. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1155. elif model_cfg['trainer_type'] == 'yolox':
  1156. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1157. elif model_cfg['trainer_type'] == 'rtmdet':
  1158. return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1159. elif model_cfg['trainer_type'] == 'detr':
  1160. return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1161. else:
  1162. raise NotImplementedError