| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- import torch
- import torch.nn as nn
- class SiLU(nn.Module):
- """export-friendly version of nn.SiLU()"""
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- # Basic conv layer
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type='lrelu', # activation
- norm_type='BN', # normalization
- depthwise=False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type:
- convs.append(get_norm(norm_type, c1))
- if act_type:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- # ELAN Block
- class ELANBlock(nn.Module):
- """
- ELAN BLock of YOLOv7's backbone
- """
- def __init__(self, in_dim, out_dim, expand_ratio=0.5, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANBlock, self).__init__()
- inter_dim = int(in_dim * expand_ratio)
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv3 = nn.Sequential(*[
- Conv(inter_dim, inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- for _ in range(2)
- ])
- self.cv4 = nn.Sequential(*[
- Conv(inter_dim, inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- for _ in range(2)
- ])
- self.out = Conv(inter_dim*4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- """
- Input:
- x: [B, C, H, W]
- Output:
- out: [B, 2C, H, W]
- """
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- x3 = self.cv3(x2)
- x4 = self.cv4(x3)
- # [B, C, H, W] -> [B, 2C, H, W]
- out = self.out(torch.cat([x1, x2, x3, x4], dim=1))
- return out
- # DownSample Block
- class DownSample(nn.Module):
- def __init__(self, in_dim, act_type='silu', norm_type='BN'):
- super().__init__()
- inter_dim = in_dim // 2
- self.mp = nn.MaxPool2d((2, 2), 2)
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = nn.Sequential(
- Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type)
- )
- def forward(self, x):
- """
- Input:
- x: [B, C, H, W]
- Output:
- out: [B, C, H//2, W//2]
- """
- # [B, C, H, W] -> [B, C//2, H//2, W//2]
- x1 = self.cv1(self.mp(x))
- x2 = self.cv2(x)
- # [B, C, H//2, W//2]
- out = torch.cat([x1, x2], dim=1)
- return out
- # ELAN Block for PaFPN
- class ELANBlockFPN(nn.Module):
- """
- ELAN BLock of YOLOv7's head
- """
- def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANBlockFPN, self).__init__()
- # Basic parameters
- e1, e2 = 0.5, 0.5
- width = 4
- depth = 1
- inter_dim = int(in_dim * e1)
- inter_dim2 = int(inter_dim * e2)
- # Network structure
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv3 = nn.ModuleList()
- for idx in range(width):
- if idx == 0:
- cvs = [Conv(inter_dim, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
- else:
- cvs = [Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
- # deeper
- if depth > 1:
- for _ in range(1, depth):
- cvs.append(Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
- self.cv3.append(nn.Sequential(*cvs))
- else:
- self.cv3.append(cvs[0])
- self.out = Conv(inter_dim*2+inter_dim2*len(self.cv3), out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- """
- Input:
- x: [B, C_in, H, W]
- Output:
- out: [B, C_out, H, W]
- """
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- inter_outs = [x1, x2]
- for m in self.cv3:
- y1 = inter_outs[-1]
- y2 = m(y1)
- inter_outs.append(y2)
- # [B, C_in, H, W] -> [B, C_out, H, W]
- out = self.out(torch.cat(inter_outs, dim=1))
- return out
- # DownSample Block for PaFPN
- class DownSampleFPN(nn.Module):
- def __init__(self, in_dim, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- inter_dim = in_dim
- self.mp = nn.MaxPool2d((2, 2), 2)
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = nn.Sequential(
- Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- """
- Input:
- x: [B, C, H, W]
- Output:
- out: [B, 2C, H//2, W//2]
- """
- # [B, C, H, W] -> [B, C//2, H//2, W//2]
- x1 = self.cv1(self.mp(x))
- x2 = self.cv2(x)
- # [B, C, H//2, W//2]
- out = torch.cat([x1, x2], dim=1)
- return out
|