yolov7.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. import torch
  2. import torch.nn as nn
  3. from utils.nms import multiclass_nms
  4. from .yolov7_backbone import build_backbone
  5. from .yolov7_neck import build_neck
  6. from .yolov7_fpn import build_fpn
  7. from .yolov7_head import build_head
  8. # YOLOv7
  9. class YOLOv7(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False):
  18. super(YOLOv7, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.device = device # cuda或者是cpu
  22. self.num_classes = num_classes # 类别的数量
  23. self.trainable = trainable # 训练的标记
  24. self.conf_thresh = conf_thresh # 得分阈值
  25. self.nms_thresh = nms_thresh # NMS阈值
  26. self.topk = topk # topk
  27. self.stride = [8, 16, 32] # 网络的输出步长
  28. # ------------------- Anchor box -------------------
  29. self.num_levels = 3
  30. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  31. self.anchor_size = torch.as_tensor(
  32. cfg['anchor_size']
  33. ).view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  34. # ------------------- Network Structure -------------------
  35. ## 主干网络
  36. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  37. ## 颈部网络: SPP模块
  38. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
  39. feats_dim[-1] = self.neck.out_dim
  40. ## 颈部网络: 特征金字塔
  41. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=256)
  42. self.head_dim = self.fpn.out_dim
  43. ## 检测头
  44. self.non_shared_heads = nn.ModuleList(
  45. [build_head(cfg, head_dim, head_dim, num_classes)
  46. for head_dim in self.head_dim
  47. ])
  48. ## 预测层
  49. self.obj_preds = nn.ModuleList(
  50. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  51. for head in self.non_shared_heads
  52. ])
  53. self.cls_preds = nn.ModuleList(
  54. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  55. for head in self.non_shared_heads
  56. ])
  57. self.reg_preds = nn.ModuleList(
  58. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  59. for head in self.non_shared_heads
  60. ])
  61. # --------- Network Initialization ----------
  62. # init bias
  63. self.init_yolo()
  64. def init_yolo(self):
  65. # Init yolo
  66. for m in self.modules():
  67. if isinstance(m, nn.BatchNorm2d):
  68. m.eps = 1e-3
  69. m.momentum = 0.03
  70. # Init bias
  71. init_prob = 0.01
  72. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  73. # obj pred
  74. for obj_pred in self.obj_preds:
  75. b = obj_pred.bias.view(1, -1)
  76. b.data.fill_(bias_value.item())
  77. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  78. # cls pred
  79. for cls_pred in self.cls_preds:
  80. b = cls_pred.bias.view(1, -1)
  81. b.data.fill_(bias_value.item())
  82. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  83. # reg pred
  84. for reg_pred in self.reg_preds:
  85. b = reg_pred.bias.view(-1, )
  86. b.data.fill_(1.0)
  87. reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  88. w = reg_pred.weight
  89. w.data.fill_(0.)
  90. reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  91. def generate_anchors(self, level, fmp_size):
  92. """
  93. fmp_size: (List) [H, W]
  94. """
  95. # generate grid cells
  96. fmp_h, fmp_w = fmp_size
  97. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  98. # [H, W, 2] -> [HW, 2]
  99. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  100. anchor_xy += 0.5 # add center offset
  101. anchor_xy *= self.stride[level]
  102. anchors = anchor_xy.to(self.device)
  103. return anchors
  104. def decode_boxes(self, anchors, reg_pred, stride):
  105. """
  106. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  107. reg_pred: (List[Tensor]) [B, M, 4] or [M, 4]
  108. """
  109. # center of bbox
  110. pred_ctr_xy = anchors + reg_pred[..., :2] * stride
  111. # size of bbox
  112. pred_box_wh = reg_pred[..., 2:].exp() * stride
  113. pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
  114. pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
  115. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  116. return pred_box
  117. def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
  118. """
  119. Input:
  120. obj_preds: List(Tensor) [[H x W, 1], ...]
  121. cls_preds: List(Tensor) [[H x W, C], ...]
  122. reg_preds: List(Tensor) [[H x W, 4], ...]
  123. anchors: List(Tensor) [[H x W, 2], ...]
  124. """
  125. all_scores = []
  126. all_labels = []
  127. all_bboxes = []
  128. for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchors_i) in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
  129. # (H x W x C,)
  130. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  131. # Keep top k top scoring indices only.
  132. num_topk = min(self.topk, reg_pred_i.size(0))
  133. # torch.sort is actually faster than .topk (at least on GPUs)
  134. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  135. topk_scores = predicted_prob[:num_topk]
  136. topk_idxs = topk_idxs[:num_topk]
  137. # filter out the proposals with low confidence score
  138. keep_idxs = topk_scores > self.conf_thresh
  139. scores = topk_scores[keep_idxs]
  140. topk_idxs = topk_idxs[keep_idxs]
  141. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  142. labels = topk_idxs % self.num_classes
  143. reg_pred_i = reg_pred_i[anchor_idxs]
  144. anchors_i = anchors_i[anchor_idxs]
  145. # decode box: [M, 4]
  146. bboxes = self.decode_boxes(anchors_i, reg_pred_i, self.stride[level])
  147. all_scores.append(scores)
  148. all_labels.append(labels)
  149. all_bboxes.append(bboxes)
  150. scores = torch.cat(all_scores)
  151. labels = torch.cat(all_labels)
  152. bboxes = torch.cat(all_bboxes)
  153. # to cpu & numpy
  154. scores = scores.cpu().numpy()
  155. labels = labels.cpu().numpy()
  156. bboxes = bboxes.cpu().numpy()
  157. # nms
  158. scores, labels, bboxes = multiclass_nms(
  159. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  160. return bboxes, scores, labels
  161. @torch.no_grad()
  162. def inference_single_image(self, x):
  163. # 主干网络
  164. pyramid_feats = self.backbone(x)
  165. # 颈部网络
  166. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  167. # 特征金字塔
  168. pyramid_feats = self.fpn(pyramid_feats)
  169. # 检测头
  170. all_obj_preds = []
  171. all_cls_preds = []
  172. all_reg_preds = []
  173. all_anchors = []
  174. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  175. cls_feat, reg_feat = head(feat)
  176. # [1, C, H, W]
  177. obj_pred = self.obj_preds[level](reg_feat)
  178. cls_pred = self.cls_preds[level](cls_feat)
  179. reg_pred = self.reg_preds[level](reg_feat)
  180. # anchors: [M, 2]
  181. fmp_size = cls_pred.shape[-2:]
  182. anchors = self.generate_anchors(level, fmp_size)
  183. # [1, C, H, W] -> [H, W, C] -> [M, C]
  184. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  185. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  186. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  187. all_obj_preds.append(obj_pred)
  188. all_cls_preds.append(cls_pred)
  189. all_reg_preds.append(reg_pred)
  190. all_anchors.append(anchors)
  191. # post process
  192. bboxes, scores, labels = self.post_process(
  193. all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
  194. return bboxes, scores, labels
  195. def forward(self, x):
  196. if not self.trainable:
  197. return self.inference_single_image(x)
  198. else:
  199. # 主干网络
  200. pyramid_feats = self.backbone(x)
  201. # 颈部网络
  202. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  203. # 特征金字塔
  204. pyramid_feats = self.fpn(pyramid_feats)
  205. # 检测头
  206. all_anchors = []
  207. all_obj_preds = []
  208. all_cls_preds = []
  209. all_box_preds = []
  210. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  211. cls_feat, reg_feat = head(feat)
  212. # [B, C, H, W]
  213. obj_pred = self.obj_preds[level](reg_feat)
  214. cls_pred = self.cls_preds[level](cls_feat)
  215. reg_pred = self.reg_preds[level](reg_feat)
  216. B, _, H, W = cls_pred.size()
  217. fmp_size = [H, W]
  218. # generate anchor boxes: [M, 4]
  219. anchors = self.generate_anchors(level, fmp_size)
  220. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  221. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  222. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  223. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  224. # decode box: [M, 4]
  225. box_pred = self.decode_boxes(anchors, reg_pred, self.stride[level])
  226. all_obj_preds.append(obj_pred)
  227. all_cls_preds.append(cls_pred)
  228. all_box_preds.append(box_pred)
  229. all_anchors.append(anchors)
  230. # output dict
  231. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  232. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  233. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  234. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  235. 'strides': self.stride} # List(Int) [8, 16, 32]
  236. return outputs