| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- import torch
- import torch.nn as nn
- from utils.nms import multiclass_nms
- from .yolov7_backbone import build_backbone
- from .yolov7_neck import build_neck
- from .yolov7_fpn import build_fpn
- from .yolov7_head import build_head
- # YOLOv7
- class YOLOv7(nn.Module):
- def __init__(self,
- cfg,
- device,
- num_classes=20,
- conf_thresh=0.01,
- topk=100,
- nms_thresh=0.5,
- trainable=False):
- super(YOLOv7, self).__init__()
- # ------------------- Basic parameters -------------------
- self.cfg = cfg # 模型配置文件
- self.device = device # cuda或者是cpu
- self.num_classes = num_classes # 类别的数量
- self.trainable = trainable # 训练的标记
- self.conf_thresh = conf_thresh # 得分阈值
- self.nms_thresh = nms_thresh # NMS阈值
- self.topk = topk # topk
- self.stride = [8, 16, 32] # 网络的输出步长
- # ------------------- Anchor box -------------------
- self.num_levels = 3
- self.num_anchors = len(cfg['anchor_size']) // self.num_levels
- self.anchor_size = torch.as_tensor(
- cfg['anchor_size']
- ).view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
-
- # ------------------- Network Structure -------------------
- ## 主干网络
- self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
- ## 颈部网络: SPP模块
- self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
- feats_dim[-1] = self.neck.out_dim
- ## 颈部网络: 特征金字塔
- self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=256)
- self.head_dim = self.fpn.out_dim
- ## 检测头
- self.non_shared_heads = nn.ModuleList(
- [build_head(cfg, head_dim, head_dim, num_classes)
- for head_dim in self.head_dim
- ])
- ## 预测层
- self.obj_preds = nn.ModuleList(
- [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
- for head in self.non_shared_heads
- ])
- self.cls_preds = nn.ModuleList(
- [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
- for head in self.non_shared_heads
- ])
- self.reg_preds = nn.ModuleList(
- [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
- for head in self.non_shared_heads
- ])
- # --------- Network Initialization ----------
- # init bias
- self.init_yolo()
- def init_yolo(self):
- # Init yolo
- for m in self.modules():
- if isinstance(m, nn.BatchNorm2d):
- m.eps = 1e-3
- m.momentum = 0.03
- # Init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- # obj pred
- for obj_pred in self.obj_preds:
- b = obj_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # cls pred
- for cls_pred in self.cls_preds:
- b = cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- for reg_pred in self.reg_preds:
- b = reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = reg_pred.weight
- w.data.fill_(0.)
- reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- def generate_anchors(self, level, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchor_xy += 0.5 # add center offset
- anchor_xy *= self.stride[level]
- anchors = anchor_xy.to(self.device)
- return anchors
-
- def decode_boxes(self, anchors, reg_pred, stride):
- """
- anchors: (List[Tensor]) [1, M, 2] or [M, 2]
- reg_pred: (List[Tensor]) [B, M, 4] or [M, 4]
- """
- # center of bbox
- pred_ctr_xy = anchors + reg_pred[..., :2] * stride
- # size of bbox
- pred_box_wh = reg_pred[..., 2:].exp() * stride
- pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
- pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return pred_box
- def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
- """
- Input:
- obj_preds: List(Tensor) [[H x W, 1], ...]
- cls_preds: List(Tensor) [[H x W, C], ...]
- reg_preds: List(Tensor) [[H x W, 4], ...]
- anchors: List(Tensor) [[H x W, 2], ...]
- """
- all_scores = []
- all_labels = []
- all_bboxes = []
-
- for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchors_i) in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
- # (H x W x C,)
- scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk, reg_pred_i.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- labels = topk_idxs % self.num_classes
- reg_pred_i = reg_pred_i[anchor_idxs]
- anchors_i = anchors_i[anchor_idxs]
- # decode box: [M, 4]
- bboxes = self.decode_boxes(anchors_i, reg_pred_i, self.stride[level])
- all_scores.append(scores)
- all_labels.append(labels)
- all_bboxes.append(bboxes)
- scores = torch.cat(all_scores)
- labels = torch.cat(all_labels)
- bboxes = torch.cat(all_bboxes)
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
- return bboxes, scores, labels
- @torch.no_grad()
- def inference_single_image(self, x):
- # 主干网络
- pyramid_feats = self.backbone(x)
- # 颈部网络
- pyramid_feats[-1] = self.neck(pyramid_feats[-1])
- # 特征金字塔
- pyramid_feats = self.fpn(pyramid_feats)
- # 检测头
- all_obj_preds = []
- all_cls_preds = []
- all_reg_preds = []
- all_anchors = []
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
- cls_feat, reg_feat = head(feat)
- # [1, C, H, W]
- obj_pred = self.obj_preds[level](reg_feat)
- cls_pred = self.cls_preds[level](cls_feat)
- reg_pred = self.reg_preds[level](reg_feat)
- # anchors: [M, 2]
- fmp_size = cls_pred.shape[-2:]
- anchors = self.generate_anchors(level, fmp_size)
- # [1, C, H, W] -> [H, W, C] -> [M, C]
- obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
- cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
- reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
- all_obj_preds.append(obj_pred)
- all_cls_preds.append(cls_pred)
- all_reg_preds.append(reg_pred)
- all_anchors.append(anchors)
- # post process
- bboxes, scores, labels = self.post_process(
- all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
-
- return bboxes, scores, labels
- def forward(self, x):
- if not self.trainable:
- return self.inference_single_image(x)
- else:
- # 主干网络
- pyramid_feats = self.backbone(x)
- # 颈部网络
- pyramid_feats[-1] = self.neck(pyramid_feats[-1])
- # 特征金字塔
- pyramid_feats = self.fpn(pyramid_feats)
- # 检测头
- all_anchors = []
- all_obj_preds = []
- all_cls_preds = []
- all_box_preds = []
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
- cls_feat, reg_feat = head(feat)
- # [B, C, H, W]
- obj_pred = self.obj_preds[level](reg_feat)
- cls_pred = self.cls_preds[level](cls_feat)
- reg_pred = self.reg_preds[level](reg_feat)
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- # generate anchor boxes: [M, 4]
- anchors = self.generate_anchors(level, fmp_size)
-
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
- # decode box: [M, 4]
- box_pred = self.decode_boxes(anchors, reg_pred, self.stride[level])
- all_obj_preds.append(obj_pred)
- all_cls_preds.append(cls_pred)
- all_box_preds.append(box_pred)
- all_anchors.append(anchors)
-
- # output dict
- outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
- "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
- "anchors": all_anchors, # List(Tensor) [B, M, 2]
- 'strides': self.stride} # List(Int) [8, 16, 32]
- return outputs
|