yolov5.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. import torch
  2. import torch.nn as nn
  3. from utils.nms import multiclass_nms
  4. from .yolov5_backbone import build_backbone
  5. from .yolov5_fpn import build_fpn
  6. from .yolov5_head import build_head
  7. # YOLOv5
  8. class YOLOv5(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes=20,
  13. conf_thresh=0.01,
  14. topk=100,
  15. nms_thresh=0.5,
  16. trainable=False):
  17. super(YOLOv5, self).__init__()
  18. # ------------------- Basic parameters -------------------
  19. self.cfg = cfg # 模型配置文件
  20. self.device = device # cuda或者是cpu
  21. self.num_classes = num_classes # 类别的数量
  22. self.trainable = trainable # 训练的标记
  23. self.conf_thresh = conf_thresh # 得分阈值
  24. self.nms_thresh = nms_thresh # NMS阈值
  25. self.topk = topk # topk
  26. self.stride = [8, 16, 32] # 网络的输出步长
  27. # ------------------- Anchor box -------------------
  28. self.num_levels = 3
  29. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  30. self.anchor_size = torch.as_tensor(
  31. cfg['anchor_size']
  32. ).view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  33. # ------------------- Network Structure -------------------
  34. ## 主干网络
  35. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  36. ## 颈部网络: 特征金字塔
  37. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  38. self.head_dim = self.fpn.out_dim
  39. ## 检测头
  40. self.non_shared_heads = nn.ModuleList(
  41. [build_head(cfg, head_dim, head_dim, num_classes)
  42. for head_dim in self.head_dim
  43. ])
  44. ## 预测层
  45. self.obj_preds = nn.ModuleList(
  46. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  47. for head in self.non_shared_heads
  48. ])
  49. self.cls_preds = nn.ModuleList(
  50. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  51. for head in self.non_shared_heads
  52. ])
  53. self.reg_preds = nn.ModuleList(
  54. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  55. for head in self.non_shared_heads
  56. ])
  57. # --------- Network Initialization ----------
  58. self.init_yolo()
  59. def init_yolo(self):
  60. # Init yolo
  61. for m in self.modules():
  62. if isinstance(m, nn.BatchNorm2d):
  63. m.eps = 1e-3
  64. m.momentum = 0.03
  65. # Init bias
  66. init_prob = 0.01
  67. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  68. # obj pred
  69. for obj_pred in self.obj_preds:
  70. b = obj_pred.bias.view(self.num_anchors, -1)
  71. b.data.fill_(bias_value.item())
  72. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  73. # cls pred
  74. for cls_pred in self.cls_preds:
  75. b = cls_pred.bias.view(self.num_anchors, -1)
  76. b.data.fill_(bias_value.item())
  77. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  78. def generate_anchors(self, level, fmp_size):
  79. """
  80. fmp_size: (List) [H, W]
  81. """
  82. fmp_h, fmp_w = fmp_size
  83. # [KA, 2]
  84. anchor_size = self.anchor_size[level]
  85. # generate grid cells
  86. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  87. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  88. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  89. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  90. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  91. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  92. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  93. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  94. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  95. return anchors
  96. def decode_boxes(self, level, anchors, reg_pred):
  97. """
  98. 将txtytwth转换为常用的x1y1x2y2形式。
  99. """
  100. # 计算预测边界框的中心点坐标和宽高
  101. pred_ctr = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  102. pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  103. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  104. pred_x1y1 = pred_ctr - pred_wh * 0.5
  105. pred_x2y2 = pred_ctr + pred_wh * 0.5
  106. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  107. return pred_box
  108. def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
  109. """
  110. Input:
  111. obj_preds: List(Tensor) [[H x W, 1], ...]
  112. cls_preds: List(Tensor) [[H x W, C], ...]
  113. reg_preds: List(Tensor) [[H x W, 4], ...]
  114. anchors: List(Tensor) [[H x W, 2], ...]
  115. """
  116. all_scores = []
  117. all_labels = []
  118. all_bboxes = []
  119. for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchor_i) \
  120. in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
  121. # (H x W x KA x C,)
  122. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  123. # Keep top k top scoring indices only.
  124. num_topk = min(self.topk, reg_pred_i.size(0))
  125. # torch.sort is actually faster than .topk (at least on GPUs)
  126. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  127. topk_scores = predicted_prob[:num_topk]
  128. topk_idxs = topk_idxs[:num_topk]
  129. # filter out the proposals with low confidence score
  130. keep_idxs = topk_scores > self.conf_thresh
  131. scores = topk_scores[keep_idxs]
  132. topk_idxs = topk_idxs[keep_idxs]
  133. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  134. labels = topk_idxs % self.num_classes
  135. reg_pred_i = reg_pred_i[anchor_idxs]
  136. anchor_i = anchor_i[anchor_idxs]
  137. # decode box: [M, 4]
  138. bboxes = self.decode_boxes(level, anchor_i, reg_pred_i)
  139. all_scores.append(scores)
  140. all_labels.append(labels)
  141. all_bboxes.append(bboxes)
  142. scores = torch.cat(all_scores)
  143. labels = torch.cat(all_labels)
  144. bboxes = torch.cat(all_bboxes)
  145. # to cpu & numpy
  146. scores = scores.cpu().numpy()
  147. labels = labels.cpu().numpy()
  148. bboxes = bboxes.cpu().numpy()
  149. # nms
  150. scores, labels, bboxes = multiclass_nms(
  151. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  152. return bboxes, scores, labels
  153. @torch.no_grad()
  154. def inference(self, x):
  155. # 主干网络
  156. pyramid_feats = self.backbone(x)
  157. # 特征金字塔
  158. pyramid_feats = self.fpn(pyramid_feats)
  159. # 检测头
  160. all_anchors = []
  161. all_obj_preds = []
  162. all_cls_preds = []
  163. all_reg_preds = []
  164. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  165. cls_feat, reg_feat = head(feat)
  166. # [1, C, H, W]
  167. obj_pred = self.obj_preds[level](reg_feat)
  168. cls_pred = self.cls_preds[level](cls_feat)
  169. reg_pred = self.reg_preds[level](reg_feat)
  170. # anchors: [M, 2]
  171. fmp_size = cls_pred.shape[-2:]
  172. anchors = self.generate_anchors(level, fmp_size)
  173. # [1, AC, H, W] -> [H, W, AC] -> [M, C]
  174. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  175. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  176. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  177. all_obj_preds.append(obj_pred)
  178. all_cls_preds.append(cls_pred)
  179. all_reg_preds.append(reg_pred)
  180. all_anchors.append(anchors)
  181. # post process
  182. bboxes, scores, labels = self.post_process(
  183. all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
  184. return bboxes, scores, labels
  185. def forward(self, x):
  186. if not self.trainable:
  187. return self.inference(x)
  188. else:
  189. bs = x.shape[0]
  190. # 主干网络
  191. pyramid_feats = self.backbone(x)
  192. # 特征金字塔
  193. pyramid_feats = self.fpn(pyramid_feats)
  194. # 检测头
  195. all_fmp_sizes = []
  196. all_obj_preds = []
  197. all_cls_preds = []
  198. all_box_preds = []
  199. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  200. cls_feat, reg_feat = head(feat)
  201. # [B, C, H, W]
  202. obj_pred = self.obj_preds[level](reg_feat)
  203. cls_pred = self.cls_preds[level](cls_feat)
  204. reg_pred = self.reg_preds[level](reg_feat)
  205. fmp_size = cls_pred.shape[-2:]
  206. # generate anchor boxes: [M, 4]
  207. anchors = self.generate_anchors(level, fmp_size)
  208. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  209. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  210. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  211. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  212. # decode bbox
  213. box_pred = self.decode_boxes(level, anchors, reg_pred)
  214. all_obj_preds.append(obj_pred)
  215. all_cls_preds.append(cls_pred)
  216. all_box_preds.append(box_pred)
  217. all_fmp_sizes.append(fmp_size)
  218. # output dict
  219. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  220. "pred_cls": all_cls_preds, # List [B, M, C]
  221. "pred_box": all_box_preds, # List [B, M, 4]
  222. 'fmp_sizes': all_fmp_sizes, # List
  223. 'strides': self.stride, # List
  224. }
  225. return outputs