yolov5_config.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. # YOLOv5 Config
  2. yolov5_cfg = {
  3. # input
  4. 'trans_type': 'yolov5',
  5. 'multi_scale': [0.5, 1.0],
  6. # model
  7. 'backbone': 'cspdarknet',
  8. 'pretrained': False,
  9. 'bk_act': 'silu',
  10. 'bk_norm': 'BN',
  11. 'bk_dpw': False,
  12. 'stride': [8, 16, 32], # P3, P4, P5
  13. 'width': 1.0,
  14. 'depth': 1.0,
  15. # fpn
  16. 'fpn': 'yolo_pafpn',
  17. 'fpn_act': 'silu',
  18. 'fpn_norm': 'BN',
  19. 'fpn_depthwise': False,
  20. # head
  21. 'head': 'decoupled_head',
  22. 'head_act': 'silu',
  23. 'head_norm': 'BN',
  24. 'num_cls_head': 2,
  25. 'num_reg_head': 2,
  26. 'head_depthwise': False,
  27. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  28. [30, 61], [62, 45], [59, 119], # P4
  29. [116, 90], [156, 198], [373, 326]], # P5
  30. # matcher
  31. 'anchor_thresh': 4.0,
  32. # loss weight
  33. 'loss_obj_weight': 1.0,
  34. 'loss_cls_weight': 1.0,
  35. 'loss_box_weight': 5.0,
  36. # training configuration
  37. 'no_aug_epoch': 10,
  38. # optimizer
  39. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  40. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  41. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  42. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  43. # model EMA
  44. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  45. 'ema_tau': 2000,
  46. # lr schedule
  47. 'scheduler': 'linear',
  48. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  49. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  50. 'warmup_momentum': 0.8,
  51. 'warmup_bias_lr': 0.1,
  52. }