| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import copy
- from .matcher import build_matcher
- from utils.misc import sigmoid_focal_loss
- from utils.box_ops import box_cxcywh_to_xyxy, generalized_box_iou
- from utils.distributed_utils import is_dist_avail_and_initialized, get_world_size
- class Criterion(nn.Module):
- """ This class computes the loss for DETR.
- The process happens in two steps:
- 1) we compute hungarian assignment between ground truth boxes and the outputs of the model
- 2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
- """
- def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25):
- """ Create the criterion.
- Parameters:
- num_classes: number of object categories, omitting the special no-object category
- matcher: module able to compute a matching between targets and proposals
- weight_dict: dict containing as key the names of the losses and as values their relative weight.
- eos_coef: relative classification weight applied to the no-object category
- losses: list of all the losses to be applied. See get_loss for list of available losses.
- """
- super().__init__()
- self.num_classes = num_classes
- self.matcher = matcher
- self.weight_dict = weight_dict
- self.losses = losses
- self.focal_alpha = focal_alpha
- def _get_src_permutation_idx(self, indices):
- # permute predictions following indices
- batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
- src_idx = torch.cat([src for (src, _) in indices])
- return batch_idx, src_idx
- def _get_tgt_permutation_idx(self, indices):
- # permute targets following indices
- batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
- tgt_idx = torch.cat([tgt for (_, tgt) in indices])
- return batch_idx, tgt_idx
- def loss_labels(self, outputs, targets, indices, num_boxes):
- """Classification loss (NLL)
- targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
- """
- assert 'pred_logits' in outputs
- src_logits = outputs['pred_logits']
- idx = self._get_src_permutation_idx(indices)
- target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]).to(src_logits.device)
- target_classes = torch.full(src_logits.shape[:2], self.num_classes,
- dtype=torch.int64, device=src_logits.device)
- target_classes[idx] = target_classes_o
- target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1],
- dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device)
- target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
- target_classes_onehot = target_classes_onehot[:, :, :-1]
- loss_cls = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * \
- src_logits.shape[1]
- losses = {'loss_cls': loss_cls}
- return losses
- def loss_boxes(self, outputs, targets, indices, num_boxes):
- """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
- targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
- The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
- """
- assert 'pred_boxes' in outputs
- idx = self._get_src_permutation_idx(indices)
- src_boxes = outputs['pred_boxes'][idx]
- target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0).to(src_boxes.device)
- loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
- losses = {}
- losses['loss_bbox'] = loss_bbox.sum() / num_boxes
- loss_giou = 1 - torch.diag(generalized_box_iou(
- box_cxcywh_to_xyxy(src_boxes),
- box_cxcywh_to_xyxy(target_boxes)))
- losses['loss_giou'] = loss_giou.sum() / num_boxes
- return losses
- def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
- loss_map = {
- 'labels': self.loss_labels,
- 'boxes': self.loss_boxes,
- }
- assert loss in loss_map, f'do you really want to compute {loss} loss?'
- return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
- def forward(self, outputs, targets):
- """ This performs the loss computation.
- Parameters:
- outputs: dict of tensors, see the output specification of the model for the format
- targets: list of dicts, such that len(targets) == batch_size.
- The expected keys in each dict depends on the losses applied, see each loss' doc
- """
- outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
- # Retrieve the matching between the outputs of the last layer and the targets
- indices = self.matcher(outputs_without_aux, targets)
- # Compute the average number of target boxes accross all nodes, for normalization purposes
- num_boxes = sum(len(t["labels"]) for t in targets)
- num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_boxes)
- num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
- # Compute all the requested losses
- losses = {}
- for loss in self.losses:
- losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
- # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
- if 'aux_outputs' in outputs:
- for i, aux_outputs in enumerate(outputs['aux_outputs']):
- indices = self.matcher(aux_outputs, targets)
- for loss in self.losses:
- kwargs = {}
- l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
- l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
- losses.update(l_dict)
- weight_dict = self.weight_dict
- total_loss = sum(losses[k] * weight_dict[k] for k in losses.keys() if k in weight_dict)
- losses['losses'] = total_loss
- return losses
- # build criterion
- def build_criterion(cfg, num_classes, aux_loss=False):
- matcher = build_matcher(cfg)
-
- weight_dict = {'loss_cls': cfg['loss_cls_weight'],
- 'loss_bbox': cfg['loss_box_weight'],
- 'loss_giou': cfg['loss_giou_weight']}
- # TODO this is a hack
- if aux_loss:
- aux_weight_dict = {}
- for i in range(cfg['num_decoder_layers'] - 1):
- aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
- weight_dict.update(aux_weight_dict)
- losses = ['labels', 'boxes']
-
- criterion = Criterion(
- num_classes=num_classes,
- matcher=matcher,
- weight_dict=weight_dict,
- losses=losses,
- focal_alpha=cfg['focal_alpha'])
- return criterion
-
|