| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926 |
- import torch
- import torch.distributed as dist
- import time
- import os
- import numpy as np
- import random
- # ----------------- Extra Components -----------------
- from utils import distributed_utils
- from utils.misc import ModelEMA, CollateFunc, build_dataloader
- from utils.vis_tools import vis_data
- # ----------------- Evaluator Components -----------------
- from evaluator.build import build_evluator
- # ----------------- Optimizer & LrScheduler Components -----------------
- from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
- from utils.solver.lr_scheduler import build_lr_scheduler
- # ----------------- Dataset Components -----------------
- from dataset.build import build_dataset, build_transform
- # Trainer refered to YOLOv8
- class YoloTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.last_opt_step = 0
- self.device = device
- self.criterion = criterion
- self.heavy_eval = False
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- world_size = distributed_utils.get_world_size()
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- accumulate = max(1, round(64 / self.args.batch_size))
- self.model_cfg['weight_decay'] *= self.args.batch_size * accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.args.max_epoch += self.args.wp_epoch
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume:
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(
- model,
- self.model_cfg['ema_decay'],
- self.model_cfg['ema_tau'],
- self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.model_cfg['no_aug_epoch'] - 1):
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print('close Mosaic Augmentation ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print('close Mixup Augmentation ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # train one epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- # path to save model
- path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
- os.makedirs(path_to_save, exist_ok=True)
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch + 1))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch + 1)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- accumulate = accumulate = max(1, round(64 / self.args.batch_size))
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.model_cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, model.stride, self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets)
- losses = loss_dict['losses']
- losses *= images.shape[0] # loss * bs
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- if self.args.distributed:
- # gradient averaged between devices in DDP mode
- losses *= distributed_utils.get_world_size()
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni - self.last_opt_step >= accumulate:
- if self.model_cfg['clip_grad'] > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.model_cfg['clip_grad'])
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- self.last_opt_step = ni
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- if k == 'losses' and self.args.distributed:
- world_size = distributed_utils.get_world_size()
- log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
- else:
- log += '[{}: {:.2f}]'.format(k, loss_dict[k])
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- # LR Schedule
- self.lr_scheduler.step()
- self.epoch += 1
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- # Trainer refered to RTMDet
- class RTMTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.heavy_eval = False
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- world_size = distributed_utils.get_world_size()
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.model_cfg['lr0'] *= self.args.batch_size / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.args.max_epoch += self.args.wp_epoch
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume:
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(
- model,
- self.model_cfg['ema_decay'],
- self.model_cfg['ema_tau'],
- self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.model_cfg['no_aug_epoch'] - 1):
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print('close Mosaic Augmentation ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print('close Mixup Augmentation ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # train one epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- # path to save model
- path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
- os.makedirs(path_to_save, exist_ok=True)
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch + 1))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch + 1)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.model_cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, model.stride, self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets)
- losses = loss_dict['losses']
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if self.model_cfg['clip_grad'] > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.model_cfg['clip_grad'])
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- if k == 'losses' and self.args.distributed:
- world_size = distributed_utils.get_world_size()
- log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
- else:
- log += '[{}: {:.2f}]'.format(k, loss_dict[k])
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- # LR Schedule
- self.lr_scheduler.step()
- self.epoch += 1
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- # Trainer for DETR
- class DetrTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.last_opt_step = 0
- self.device = device
- self.criterion = criterion
- self.heavy_eval = False
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- world_size = distributed_utils.get_world_size()
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.model_cfg['lr0'] *= self.args.batch_size / 16.
- self.optimizer, self.start_epoch = build_detr_optimizer(model_cfg, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.args.max_epoch += self.args.wp_epoch
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume:
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(
- model,
- self.model_cfg['ema_decay'],
- self.model_cfg['ema_tau'],
- self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.model_cfg['no_aug_epoch'] - 1):
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print('close Mosaic Augmentation ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print('close Mixup Augmentation ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # train one epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- # path to save model
- path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
- os.makedirs(path_to_save, exist_ok=True)
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch + 1))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch + 1)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, model.max_stride, self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size, img_size)
-
- # Visualize targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets)
- losses = loss_dict['losses']
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if self.model_cfg['clip_grad'] > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.model_cfg['clip_grad'])
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # Model EMA
- if self.model_ema is not None:
- self.model_ema.update(model)
- self.last_opt_step = ni
- # Log
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[0])
- # loss infor
- for k in loss_dict_reduced.keys():
- if self.args.vis_aux_loss:
- log += '[{}: {:.2f}]'.format(k, loss_dict[k])
- else:
- if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
- log += '[{}: {:.2f}]'.format(k, loss_dict[k])
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- # LR Scheduler
- self.lr_scheduler.step()
- self.epoch += 1
-
- def refine_targets(self, targets, min_box_size, img_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"]
- labels = tgt["labels"]
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- # xyxy -> cxcywh
- new_boxes = torch.zeros_like(boxes)
- new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
- new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
- # normalize
- new_boxes /= img_size
- del boxes
- tgt["boxes"] = new_boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- # xyxy -> cxcywh
- new_boxes = torch.zeros_like(boxes)
- new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
- new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
- # normalize
- new_boxes /= new_img_size
- del boxes
- tgt["boxes"] = new_boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- # Build Trainer
- def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
- if model_cfg['trainer_type'] == 'yolo':
- return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
- elif model_cfg['trainer_type'] == 'rtmdet':
- return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
- elif model_cfg['trainer_type'] == 'detr':
- return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
- else:
- raise NotImplementedError
-
|