yolox_config.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. # YOLOx Config
  2. yolox_cfg = {
  3. 'yolox_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## FPN
  16. 'fpn': 'yolov5_pafpn',
  17. 'fpn_reduce_layer': 'Conv',
  18. 'fpn_downsample_layer': 'Conv',
  19. 'fpn_core_block': 'CSPBlock',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. ## Head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. # ---------------- Train config ----------------
  31. ## input
  32. 'multi_scale': [0.5, 1.5], # 320 -> 960
  33. 'trans_type': 'yolox_nano',
  34. # ---------------- Assignment config ----------------
  35. ## matcher
  36. 'matcher': {'center_sampling_radius': 2.5,
  37. 'topk_candicate': 10},
  38. # ---------------- Loss config ----------------
  39. ## loss weight
  40. 'loss_obj_weight': 1.0,
  41. 'loss_cls_weight': 1.0,
  42. 'loss_box_weight': 5.0,
  43. # ---------------- Train config ----------------
  44. ## close strong augmentation
  45. 'no_aug_epoch': 20,
  46. 'trainer_type': 'yolo',
  47. ## optimizer
  48. 'optimizer': 'sgd', # optional: sgd, AdamW
  49. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  50. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  51. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  52. ## model EMA
  53. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  54. 'ema_tau': 2000,
  55. ## lr schedule
  56. 'scheduler': 'linear',
  57. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  58. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  59. 'warmup_momentum': 0.8,
  60. 'warmup_bias_lr': 0.1,
  61. },
  62. 'yolox_s':{
  63. # ---------------- Model config ----------------
  64. ## Backbone
  65. 'backbone': 'cspdarknet',
  66. 'pretrained': True,
  67. 'bk_act': 'silu',
  68. 'bk_norm': 'BN',
  69. 'bk_dpw': False,
  70. 'width': 0.50,
  71. 'depth': 0.34,
  72. 'stride': [8, 16, 32], # P3, P4, P5
  73. 'max_stride': 32,
  74. ## FPN
  75. 'fpn': 'yolov5_pafpn',
  76. 'fpn_reduce_layer': 'Conv',
  77. 'fpn_downsample_layer': 'Conv',
  78. 'fpn_core_block': 'CSPBlock',
  79. 'fpn_act': 'silu',
  80. 'fpn_norm': 'BN',
  81. 'fpn_depthwise': False,
  82. ## Head
  83. 'head': 'decoupled_head',
  84. 'head_act': 'silu',
  85. 'head_norm': 'BN',
  86. 'num_cls_head': 2,
  87. 'num_reg_head': 2,
  88. 'head_depthwise': False,
  89. # ---------------- Train config ----------------
  90. ## input
  91. 'multi_scale': [0.5, 1.5], # 320 -> 960
  92. 'trans_type': 'yolox_small',
  93. # ---------------- Assignment config ----------------
  94. ## matcher
  95. 'matcher': {'center_sampling_radius': 2.5,
  96. 'topk_candicate': 10},
  97. # ---------------- Loss config ----------------
  98. ## loss weight
  99. 'loss_obj_weight': 1.0,
  100. 'loss_cls_weight': 1.0,
  101. 'loss_box_weight': 5.0,
  102. # ---------------- Train config ----------------
  103. ## close strong augmentation
  104. 'no_aug_epoch': 20,
  105. 'trainer_type': 'yolo',
  106. ## optimizer
  107. 'optimizer': 'sgd', # optional: sgd, AdamW
  108. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  109. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  110. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  111. ## model EMA
  112. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  113. 'ema_tau': 2000,
  114. ## lr schedule
  115. 'scheduler': 'linear',
  116. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  117. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  118. 'warmup_momentum': 0.8,
  119. 'warmup_bias_lr': 0.1,
  120. },
  121. 'yolox_m':{
  122. # ---------------- Model config ----------------
  123. ## Backbone
  124. 'backbone': 'cspdarknet',
  125. 'pretrained': True,
  126. 'bk_act': 'silu',
  127. 'bk_norm': 'BN',
  128. 'bk_dpw': False,
  129. 'width': 0.75,
  130. 'depth': 0.67,
  131. 'stride': [8, 16, 32], # P3, P4, P5
  132. 'max_stride': 32,
  133. ## FPN
  134. 'fpn': 'yolov5_pafpn',
  135. 'fpn_reduce_layer': 'Conv',
  136. 'fpn_downsample_layer': 'Conv',
  137. 'fpn_core_block': 'CSPBlock',
  138. 'fpn_act': 'silu',
  139. 'fpn_norm': 'BN',
  140. 'fpn_depthwise': False,
  141. ## Head
  142. 'head': 'decoupled_head',
  143. 'head_act': 'silu',
  144. 'head_norm': 'BN',
  145. 'num_cls_head': 2,
  146. 'num_reg_head': 2,
  147. 'head_depthwise': False,
  148. # ---------------- Train config ----------------
  149. ## input
  150. 'multi_scale': [0.5, 1.5], # 320 -> 960
  151. 'trans_type': 'yolox_medium',
  152. # ---------------- Assignment config ----------------
  153. ## matcher
  154. 'matcher': {'center_sampling_radius': 2.5,
  155. 'topk_candicate': 10},
  156. # ---------------- Loss config ----------------
  157. ## loss weight
  158. 'loss_obj_weight': 1.0,
  159. 'loss_cls_weight': 1.0,
  160. 'loss_box_weight': 5.0,
  161. # ---------------- Train config ----------------
  162. ## close strong augmentation
  163. 'no_aug_epoch': 20,
  164. 'trainer_type': 'yolo',
  165. ## optimizer
  166. 'optimizer': 'sgd', # optional: sgd, AdamW
  167. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  168. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  169. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  170. ## model EMA
  171. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  172. 'ema_tau': 2000,
  173. ## lr schedule
  174. 'scheduler': 'linear',
  175. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  176. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  177. 'warmup_momentum': 0.8,
  178. 'warmup_bias_lr': 0.1,
  179. },
  180. 'yolox_l':{
  181. # ---------------- Model config ----------------
  182. ## Backbone
  183. 'backbone': 'cspdarknet',
  184. 'pretrained': True,
  185. 'bk_act': 'silu',
  186. 'bk_norm': 'BN',
  187. 'bk_dpw': False,
  188. 'width': 1.0,
  189. 'depth': 1.0,
  190. 'stride': [8, 16, 32], # P3, P4, P5
  191. 'max_stride': 32,
  192. ## FPN
  193. 'fpn': 'yolov5_pafpn',
  194. 'fpn_reduce_layer': 'Conv',
  195. 'fpn_downsample_layer': 'Conv',
  196. 'fpn_core_block': 'CSPBlock',
  197. 'fpn_act': 'silu',
  198. 'fpn_norm': 'BN',
  199. 'fpn_depthwise': False,
  200. ## Head
  201. 'head': 'decoupled_head',
  202. 'head_act': 'silu',
  203. 'head_norm': 'BN',
  204. 'num_cls_head': 2,
  205. 'num_reg_head': 2,
  206. 'head_depthwise': False,
  207. # ---------------- Train config ----------------
  208. ## input
  209. 'multi_scale': [0.5, 1.25], # 320 -> 800
  210. 'trans_type': 'yolox_large',
  211. # ---------------- Assignment config ----------------
  212. ## matcher
  213. 'matcher': {'center_sampling_radius': 2.5,
  214. 'topk_candicate': 10},
  215. # ---------------- Loss config ----------------
  216. ## loss weight
  217. 'loss_obj_weight': 1.0,
  218. 'loss_cls_weight': 1.0,
  219. 'loss_box_weight': 5.0,
  220. # ---------------- Train config ----------------
  221. ## close strong augmentation
  222. 'no_aug_epoch': 20,
  223. 'trainer_type': 'yolo',
  224. ## optimizer
  225. 'optimizer': 'sgd', # optional: sgd, AdamW
  226. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  227. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  228. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  229. ## model EMA
  230. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  231. 'ema_tau': 2000,
  232. ## lr schedule
  233. 'scheduler': 'linear',
  234. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  235. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  236. 'warmup_momentum': 0.8,
  237. 'warmup_bias_lr': 0.1,
  238. },
  239. 'yolox_x':{
  240. # ---------------- Model config ----------------
  241. ## Backbone
  242. 'backbone': 'cspdarknet',
  243. 'pretrained': True,
  244. 'bk_act': 'silu',
  245. 'bk_norm': 'BN',
  246. 'bk_dpw': False,
  247. 'width': 1.25,
  248. 'depth': 1.34,
  249. 'stride': [8, 16, 32], # P3, P4, P5
  250. 'max_stride': 32,
  251. ## FPN
  252. 'fpn': 'yolov5_pafpn',
  253. 'fpn_reduce_layer': 'Conv',
  254. 'fpn_downsample_layer': 'Conv',
  255. 'fpn_core_block': 'CSPBlock',
  256. 'fpn_act': 'silu',
  257. 'fpn_norm': 'BN',
  258. 'fpn_depthwise': False,
  259. ## Head
  260. 'head': 'decoupled_head',
  261. 'head_act': 'silu',
  262. 'head_norm': 'BN',
  263. 'num_cls_head': 2,
  264. 'num_reg_head': 2,
  265. 'head_depthwise': False,
  266. # ---------------- Train config ----------------
  267. ## input
  268. 'multi_scale': [0.5, 1.25], # 320 -> 800
  269. 'trans_type': 'yolox_huge',
  270. # ---------------- Assignment config ----------------
  271. ## matcher
  272. 'matcher': {'center_sampling_radius': 2.5,
  273. 'topk_candicate': 10},
  274. # ---------------- Loss config ----------------
  275. ## loss weight
  276. 'loss_obj_weight': 1.0,
  277. 'loss_cls_weight': 1.0,
  278. 'loss_box_weight': 5.0,
  279. # ---------------- Train config ----------------
  280. ## close strong augmentation
  281. 'no_aug_epoch': 20,
  282. 'trainer_type': 'yolo',
  283. ## optimizer
  284. 'optimizer': 'sgd', # optional: sgd, AdamW
  285. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  286. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  287. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  288. ## model EMA
  289. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  290. 'ema_tau': 2000,
  291. ## lr schedule
  292. 'scheduler': 'linear',
  293. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  294. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  295. 'warmup_momentum': 0.8,
  296. 'warmup_bias_lr': 0.1,
  297. },
  298. }