yolov7_config.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # YOLOv7 Config
  2. yolov7_cfg = {
  3. 'yolov7_t':{
  4. # input
  5. 'trans_type': 'yolov5_nano',
  6. 'multi_scale': [0.5, 1.5], # 320 -> 960
  7. # model
  8. 'backbone': 'elannet_tiny',
  9. 'pretrained': True,
  10. 'bk_act': 'silu',
  11. 'bk_norm': 'BN',
  12. 'bk_dpw': False,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. # neck
  16. 'neck': 'csp_sppf',
  17. 'expand_ratio': 0.5,
  18. 'pooling_size': 5,
  19. 'neck_act': 'silu',
  20. 'neck_norm': 'BN',
  21. 'neck_depthwise': False,
  22. # fpn
  23. 'fpn': 'yolov7_pafpn',
  24. 'fpn_act': 'silu',
  25. 'fpn_norm': 'BN',
  26. 'fpn_depthwise': False,
  27. 'nbranch': 2.0, # number of branch in ELANBlockFPN
  28. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  29. 'width': 0.5, # width factor of channel in FPN
  30. # head
  31. 'head': 'decoupled_head',
  32. 'head_act': 'silu',
  33. 'head_norm': 'BN',
  34. 'num_cls_head': 2,
  35. 'num_reg_head': 2,
  36. 'head_depthwise': False,
  37. # matcher
  38. 'matcher': {'center_sampling_radius': 2.5,
  39. 'topk_candicate': 10},
  40. # loss weight
  41. 'loss_obj_weight': 1.0,
  42. 'loss_cls_weight': 1.0,
  43. 'loss_box_weight': 5.0,
  44. # training configuration
  45. 'no_aug_epoch': 20,
  46. 'trainer_type': 'yolo',
  47. # optimizer
  48. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  49. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  50. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  51. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  52. # model EMA
  53. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  54. 'ema_tau': 2000,
  55. # lr schedule
  56. 'scheduler': 'linear',
  57. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  58. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  59. 'warmup_momentum': 0.8,
  60. 'warmup_bias_lr': 0.1,
  61. },
  62. 'yolov7_l':{
  63. # input
  64. 'trans_type': 'yolov5_large',
  65. 'multi_scale': [0.5, 1.25], # 320 -> 800
  66. # model
  67. 'backbone': 'elannet_large',
  68. 'pretrained': True,
  69. 'bk_act': 'silu',
  70. 'bk_norm': 'BN',
  71. 'bk_dpw': False,
  72. 'stride': [8, 16, 32], # P3, P4, P5
  73. 'max_stride': 32,
  74. # neck
  75. 'neck': 'csp_sppf',
  76. 'expand_ratio': 0.5,
  77. 'pooling_size': 5,
  78. 'neck_act': 'silu',
  79. 'neck_norm': 'BN',
  80. 'neck_depthwise': False,
  81. # fpn
  82. 'fpn': 'yolov7_pafpn',
  83. 'fpn_act': 'silu',
  84. 'fpn_norm': 'BN',
  85. 'fpn_depthwise': False,
  86. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  87. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  88. 'width': 1.0, # width factor of channel in FPN
  89. # head
  90. 'head': 'decoupled_head',
  91. 'head_act': 'silu',
  92. 'head_norm': 'BN',
  93. 'num_cls_head': 2,
  94. 'num_reg_head': 2,
  95. 'head_depthwise': False,
  96. # matcher
  97. 'matcher': {'center_sampling_radius': 2.5,
  98. 'topk_candicate': 10},
  99. # loss weight
  100. 'loss_obj_weight': 1.0,
  101. 'loss_cls_weight': 1.0,
  102. 'loss_box_weight': 5.0,
  103. # training configuration
  104. 'no_aug_epoch': 20,
  105. 'trainer_type': 'yolo',
  106. # optimizer
  107. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  108. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  109. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  110. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  111. # model EMA
  112. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  113. 'ema_tau': 2000,
  114. # lr schedule
  115. 'scheduler': 'linear',
  116. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  117. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  118. 'warmup_momentum': 0.8,
  119. 'warmup_bias_lr': 0.1,
  120. },
  121. 'yolov7_x':{
  122. # input
  123. 'trans_type': 'yolov5_huge',
  124. 'multi_scale': [0.5, 1.25], # 320 -> 640
  125. # model
  126. 'backbone': 'elannet_huge',
  127. 'pretrained': True,
  128. 'bk_act': 'silu',
  129. 'bk_norm': 'BN',
  130. 'bk_dpw': False,
  131. 'stride': [8, 16, 32], # P3, P4, P5
  132. 'max_stride': 32,
  133. # neck
  134. 'neck': 'csp_sppf',
  135. 'expand_ratio': 0.5,
  136. 'pooling_size': 5,
  137. 'neck_act': 'silu',
  138. 'neck_norm': 'BN',
  139. 'neck_depthwise': False,
  140. # fpn
  141. 'fpn': 'yolov7_pafpn',
  142. 'fpn_act': 'silu',
  143. 'fpn_norm': 'BN',
  144. 'fpn_depthwise': False,
  145. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  146. 'depth': 2.0, # depth factor of each branch in ELANBlockFPN
  147. 'width': 1.25, # width factor of channel in FPN
  148. # head
  149. 'head': 'decoupled_head',
  150. 'head_act': 'silu',
  151. 'head_norm': 'BN',
  152. 'num_cls_head': 2,
  153. 'num_reg_head': 2,
  154. 'head_depthwise': False,
  155. # matcher
  156. 'matcher': {'center_sampling_radius': 2.5,
  157. 'topk_candicate': 10},
  158. # loss weight
  159. 'loss_obj_weight': 1.0,
  160. 'loss_cls_weight': 1.0,
  161. 'loss_box_weight': 5.0,
  162. # training configuration
  163. 'no_aug_epoch': 20,
  164. 'trainer_type': 'yolo',
  165. # optimizer
  166. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  167. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  168. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  169. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  170. # model EMA
  171. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  172. 'ema_tau': 2000,
  173. # lr schedule
  174. 'scheduler': 'linear',
  175. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  176. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  177. 'warmup_momentum': 0.8,
  178. 'warmup_bias_lr': 0.1,
  179. },
  180. }