yolov5_config.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. # YOLOv5 Config
  2. yolov5_cfg = {
  3. 'yolov5_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## FPN
  16. 'fpn': 'yolov5_pafpn',
  17. 'fpn_reduce_layer': 'Conv',
  18. 'fpn_downsample_layer': 'Conv',
  19. 'fpn_core_block': 'CSPBlock',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. ## Head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  31. [30, 61], [62, 45], [59, 119], # P4
  32. [116, 90], [156, 198], [373, 326]], # P5
  33. # ---------------- Train config ----------------
  34. ## input
  35. 'multi_scale': [0.5, 1.0], # 320 -> 640
  36. 'trans_type': 'yolov5_nano',
  37. # ---------------- Assignment config ----------------
  38. ## matcher
  39. 'anchor_thresh': 4.0,
  40. # ---------------- Loss config ----------------
  41. ## loss weight
  42. 'loss_obj_weight': 1.0,
  43. 'loss_cls_weight': 1.0,
  44. 'loss_box_weight': 5.0,
  45. # ---------------- Train config ----------------
  46. ## close strong augmentation
  47. 'no_aug_epoch': 20,
  48. 'trainer_type': 'yolo',
  49. ## optimizer
  50. 'optimizer': 'sgd', # optional: sgd, AdamW
  51. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  52. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  53. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  54. ## model EMA
  55. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  56. 'ema_tau': 2000,
  57. ## lr schedule
  58. 'scheduler': 'linear',
  59. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  60. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  61. 'warmup_momentum': 0.8,
  62. 'warmup_bias_lr': 0.1,
  63. },
  64. 'yolov5_s':{
  65. # ---------------- Model config ----------------
  66. ## Backbone
  67. 'backbone': 'cspdarknet',
  68. 'pretrained': True,
  69. 'bk_act': 'silu',
  70. 'bk_norm': 'BN',
  71. 'bk_dpw': False,
  72. 'width': 0.50,
  73. 'depth': 0.34,
  74. 'stride': [8, 16, 32], # P3, P4, P5
  75. 'max_stride': 32,
  76. ## FPN
  77. 'fpn': 'yolov5_pafpn',
  78. 'fpn_reduce_layer': 'Conv',
  79. 'fpn_downsample_layer': 'Conv',
  80. 'fpn_core_block': 'CSPBlock',
  81. 'fpn_act': 'silu',
  82. 'fpn_norm': 'BN',
  83. 'fpn_depthwise': False,
  84. ## Head
  85. 'head': 'decoupled_head',
  86. 'head_act': 'silu',
  87. 'head_norm': 'BN',
  88. 'num_cls_head': 2,
  89. 'num_reg_head': 2,
  90. 'head_depthwise': False,
  91. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  92. [30, 61], [62, 45], [59, 119], # P4
  93. [116, 90], [156, 198], [373, 326]], # P5
  94. # ---------------- Train config ----------------
  95. ## input
  96. 'multi_scale': [0.5, 1.0], # 320 -> 640
  97. 'trans_type': 'yolov5_small',
  98. # ---------------- Assignment config ----------------
  99. ## matcher
  100. 'anchor_thresh': 4.0,
  101. # ---------------- Loss config ----------------
  102. ## loss weight
  103. 'loss_obj_weight': 1.0,
  104. 'loss_cls_weight': 1.0,
  105. 'loss_box_weight': 5.0,
  106. # ---------------- Train config ----------------
  107. ## close strong augmentation
  108. 'no_aug_epoch': 20,
  109. 'trainer_type': 'yolo',
  110. ## optimizer
  111. 'optimizer': 'sgd', # optional: sgd, AdamW
  112. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  113. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  114. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  115. ## model EMA
  116. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  117. 'ema_tau': 2000,
  118. ## lr schedule
  119. 'scheduler': 'linear',
  120. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  121. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  122. 'warmup_momentum': 0.8,
  123. 'warmup_bias_lr': 0.1,
  124. },
  125. 'yolov5_m':{
  126. # ---------------- Model config ----------------
  127. ## Backbone
  128. 'backbone': 'cspdarknet',
  129. 'pretrained': True,
  130. 'bk_act': 'silu',
  131. 'bk_norm': 'BN',
  132. 'bk_dpw': False,
  133. 'width': 0.75,
  134. 'depth': 0.67,
  135. 'stride': [8, 16, 32], # P3, P4, P5
  136. 'max_stride': 32,
  137. ## FPN
  138. 'fpn': 'yolov5_pafpn',
  139. 'fpn_reduce_layer': 'Conv',
  140. 'fpn_downsample_layer': 'Conv',
  141. 'fpn_core_block': 'CSPBlock',
  142. 'fpn_act': 'silu',
  143. 'fpn_norm': 'BN',
  144. 'fpn_depthwise': False,
  145. ## Head
  146. 'head': 'decoupled_head',
  147. 'head_act': 'silu',
  148. 'head_norm': 'BN',
  149. 'num_cls_head': 2,
  150. 'num_reg_head': 2,
  151. 'head_depthwise': False,
  152. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  153. [30, 61], [62, 45], [59, 119], # P4
  154. [116, 90], [156, 198], [373, 326]], # P5
  155. # ---------------- Train config ----------------
  156. ## input
  157. 'multi_scale': [0.5, 1.0], # 320 -> 640
  158. 'trans_type': 'yolov5_medium',
  159. # ---------------- Assignment config ----------------
  160. ## matcher
  161. 'anchor_thresh': 4.0,
  162. # ---------------- Loss config ----------------
  163. ## loss weight
  164. 'loss_obj_weight': 1.0,
  165. 'loss_cls_weight': 1.0,
  166. 'loss_box_weight': 5.0,
  167. # ---------------- Train config ----------------
  168. ## close strong augmentation
  169. 'no_aug_epoch': 20,
  170. 'trainer_type': 'yolo',
  171. ## optimizer
  172. 'optimizer': 'sgd', # optional: sgd, AdamW
  173. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  174. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  175. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  176. ## model EMA
  177. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  178. 'ema_tau': 2000,
  179. ## lr schedule
  180. 'scheduler': 'linear',
  181. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  182. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  183. 'warmup_momentum': 0.8,
  184. 'warmup_bias_lr': 0.1,
  185. },
  186. 'yolov5_l':{
  187. # ---------------- Model config ----------------
  188. ## Backbone
  189. 'backbone': 'cspdarknet',
  190. 'pretrained': True,
  191. 'bk_act': 'silu',
  192. 'bk_norm': 'BN',
  193. 'bk_dpw': False,
  194. 'width': 1.0,
  195. 'depth': 1.0,
  196. 'stride': [8, 16, 32], # P3, P4, P5
  197. 'max_stride': 32,
  198. ## FPN
  199. 'fpn': 'yolov5_pafpn',
  200. 'fpn_reduce_layer': 'Conv',
  201. 'fpn_downsample_layer': 'Conv',
  202. 'fpn_core_block': 'CSPBlock',
  203. 'fpn_act': 'silu',
  204. 'fpn_norm': 'BN',
  205. 'fpn_depthwise': False,
  206. ## Head
  207. 'head': 'decoupled_head',
  208. 'head_act': 'silu',
  209. 'head_norm': 'BN',
  210. 'num_cls_head': 2,
  211. 'num_reg_head': 2,
  212. 'head_depthwise': False,
  213. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  214. [30, 61], [62, 45], [59, 119], # P4
  215. [116, 90], [156, 198], [373, 326]], # P5
  216. # ---------------- Train config ----------------
  217. ## input
  218. 'multi_scale': [0.5, 1.0], # 320 -> 640
  219. 'trans_type': 'yolov5_large',
  220. # ---------------- Assignment config ----------------
  221. ## matcher
  222. 'anchor_thresh': 4.0,
  223. # ---------------- Loss config ----------------
  224. ## loss weight
  225. 'loss_obj_weight': 1.0,
  226. 'loss_cls_weight': 1.0,
  227. 'loss_box_weight': 5.0,
  228. # ---------------- Train config ----------------
  229. ## close strong augmentation
  230. 'no_aug_epoch': 20,
  231. 'trainer_type': 'yolo',
  232. ## optimizer
  233. 'optimizer': 'sgd', # optional: sgd, AdamW
  234. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  235. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  236. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  237. ## model EMA
  238. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  239. 'ema_tau': 2000,
  240. ## lr schedule
  241. 'scheduler': 'linear',
  242. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  243. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  244. 'warmup_momentum': 0.8,
  245. 'warmup_bias_lr': 0.1,
  246. },
  247. 'yolov5_x':{
  248. # ---------------- Model config ----------------
  249. ## Backbone
  250. 'backbone': 'cspdarknet',
  251. 'pretrained': True,
  252. 'bk_act': 'silu',
  253. 'bk_norm': 'BN',
  254. 'bk_dpw': False,
  255. 'width': 1.25,
  256. 'depth': 1.34,
  257. 'stride': [8, 16, 32], # P3, P4, P5
  258. 'max_stride': 32,
  259. ## FPN
  260. 'fpn': 'yolov5_pafpn',
  261. 'fpn_reduce_layer': 'Conv',
  262. 'fpn_downsample_layer': 'Conv',
  263. 'fpn_core_block': 'CSPBlock',
  264. 'fpn_act': 'silu',
  265. 'fpn_norm': 'BN',
  266. 'fpn_depthwise': False,
  267. ## Head
  268. 'head': 'decoupled_head',
  269. 'head_act': 'silu',
  270. 'head_norm': 'BN',
  271. 'num_cls_head': 2,
  272. 'num_reg_head': 2,
  273. 'head_depthwise': False,
  274. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  275. [30, 61], [62, 45], [59, 119], # P4
  276. [116, 90], [156, 198], [373, 326]], # P5
  277. # ---------------- Train config ----------------
  278. ## input
  279. 'multi_scale': [0.5, 1.0], # 320 -> 640
  280. 'trans_type': 'yolov5_huge',
  281. # ---------------- Assignment config ----------------
  282. ## matcher
  283. 'anchor_thresh': 4.0,
  284. # ---------------- Loss config ----------------
  285. ## loss weight
  286. 'loss_obj_weight': 1.0,
  287. 'loss_cls_weight': 1.0,
  288. 'loss_box_weight': 5.0,
  289. # ---------------- Train config ----------------
  290. ## close strong augmentation
  291. 'no_aug_epoch': 20,
  292. 'trainer_type': 'yolo',
  293. ## optimizer
  294. 'optimizer': 'sgd', # optional: sgd, AdamW
  295. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  296. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  297. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  298. ## model EMA
  299. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  300. 'ema_tau': 2000,
  301. ## lr schedule
  302. 'scheduler': 'linear',
  303. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  304. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  305. 'warmup_momentum': 0.8,
  306. 'warmup_bias_lr': 0.1,
  307. },
  308. }