yolov2_config.py 1.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # YOLOv2 Config
  2. yolov2_cfg = {
  3. # input
  4. 'trans_type': 'ssd',
  5. 'multi_scale': [0.5, 1.5],
  6. # model
  7. 'backbone': 'darknet19',
  8. 'pretrained': True,
  9. 'stride': 32, # P5
  10. 'max_stride': 32,
  11. # neck
  12. 'neck': 'sppf',
  13. 'expand_ratio': 0.5,
  14. 'pooling_size': 5,
  15. 'neck_act': 'lrelu',
  16. 'neck_norm': 'BN',
  17. 'neck_depthwise': False,
  18. # head
  19. 'head': 'decoupled_head',
  20. 'head_act': 'lrelu',
  21. 'head_norm': 'BN',
  22. 'num_cls_head': 2,
  23. 'num_reg_head': 2,
  24. 'head_depthwise': False,
  25. 'anchor_size': [[17, 25],
  26. [55, 75],
  27. [92, 206],
  28. [202, 21],
  29. [289, 311]], # 416
  30. # matcher
  31. 'iou_thresh': 0.5,
  32. # loss weight
  33. 'loss_obj_weight': 1.0,
  34. 'loss_cls_weight': 1.0,
  35. 'loss_box_weight': 5.0,
  36. # training configuration
  37. 'no_aug_epoch': -1,
  38. 'trainer_type': 'yolo',
  39. # optimizer
  40. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  41. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  42. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  43. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  44. # model EMA
  45. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  46. 'ema_tau': 2000,
  47. # lr schedule
  48. 'scheduler': 'linear',
  49. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  50. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  51. 'warmup_momentum': 0.8,
  52. 'warmup_bias_lr': 0.1,
  53. }