yjh0410 ebe1d9e27f train RTCDet-S on COCO 2 роки тому
..
README.md ebe1d9e27f train RTCDet-S on COCO 2 роки тому
build.py 578dc295f4 redesign RTCDet 2 роки тому
loss.py 58f47f0b20 update 2 роки тому
matcher.py 7524433080 modify backbone 2 роки тому
rtcdet.py f6753b0e9b train RTCDet-S 2 роки тому
rtcdet_backbone.py 4e429e1847 train RTCDet-S on COCO 2 роки тому
rtcdet_basic.py ae03c10fc1 train RTCDet-M with 320-960 2 роки тому
rtcdet_head.py 578dc295f4 redesign RTCDet 2 роки тому
rtcdet_neck.py 578dc295f4 redesign RTCDet 2 роки тому
rtcdet_pafpn.py 62a5b79e6a update 2 роки тому
rtcdet_pred.py f6753b0e9b train RTCDet-S 2 роки тому

README.md

RTCDet: My Empirical Study of Real-Time Convolutional Object Detectors.

Model Scale Batch APtest
0.5:0.95
APtest
0.5
APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
RTCDet-N 640 8xb16
RTCDet-T 640 8xb16
RTCDet-S 640 8xb16 30.9 8.5
RTCDet-M 640 8xb16 48.7 67.6 80.3 22.6 ckpt
RTCDet-L 640 8xb16
RTCDet-X 640 8xb16
  • For training, we train my RTCDet series series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOX, but we remove the rotation transformation which is used in YOLOX's strong augmentation.
  • For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64.
  • For learning rate scheduler, we use linear decay scheduler.
  • Due to my limited computing resources, I can not train RTCDet-X with the setting of batch size=128.
Model Scale Batch APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
RTCDet-P 320 8xb16 -
RTCDet-P 416 8xb16 -
RTCDet-P 512 8xb16 -
RTCDet-P 640 8xb16 -