loss.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import TaskAlignedAssigner, AlignedSimOTA
  6. class Criterion(object):
  7. def __init__(self, args, cfg, device, num_classes=80):
  8. self.cfg = cfg
  9. self.args = args
  10. self.device = device
  11. self.num_classes = num_classes
  12. self.max_epoch = args.max_epoch
  13. self.no_aug_epoch = args.no_aug_epoch
  14. self.use_ema_update = cfg['ema_update']
  15. # ---------------- Loss weight ----------------
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. self.loss_dfl_weight = cfg['loss_dfl_weight']
  19. self.loss_box_aux = cfg['loss_box_aux']
  20. # ---------------- Matcher ----------------
  21. matcher_config = cfg['matcher']
  22. ## TAL assigner
  23. self.tal_matcher = TaskAlignedAssigner(
  24. topk=matcher_config['tal']['topk'],
  25. alpha=matcher_config['tal']['alpha'],
  26. beta=matcher_config['tal']['beta'],
  27. num_classes=num_classes
  28. )
  29. ## SimOTA assigner
  30. self.ota_matcher = AlignedSimOTA(
  31. center_sampling_radius=matcher_config['ota']['center_sampling_radius'],
  32. topk_candidate=matcher_config['ota']['topk_candidate'],
  33. num_classes=num_classes
  34. )
  35. def __call__(self, outputs, targets, epoch=0):
  36. if epoch < self.args.max_epoch // 2:
  37. return self.ota_loss(outputs, targets)
  38. else:
  39. return self.tal_loss(outputs, targets)
  40. def ema_update(self, name: str, value, initial_value, momentum=0.9):
  41. if hasattr(self, name):
  42. old = getattr(self, name)
  43. else:
  44. old = initial_value
  45. new = old * momentum + value * (1 - momentum)
  46. setattr(self, name, new)
  47. return new
  48. # ----------------- Loss functions -----------------
  49. def loss_classes(self, pred_cls, gt_score, gt_label=None, vfl=False):
  50. if vfl:
  51. assert gt_label is not None
  52. # compute varifocal loss
  53. alpha, gamma = 0.75, 2.0
  54. focal_weight = alpha * pred_cls.sigmoid().pow(gamma) * (1 - gt_label) + gt_score * gt_label
  55. bce_loss = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  56. loss_cls = bce_loss * focal_weight
  57. else:
  58. # compute bce loss
  59. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  60. return loss_cls
  61. def loss_bboxes(self, pred_box, gt_box, bbox_weight=None):
  62. # regression loss
  63. ious = get_ious(pred_box, gt_box, 'xyxy', 'giou')
  64. loss_box = 1.0 - ious
  65. if bbox_weight is not None:
  66. loss_box *= bbox_weight
  67. return loss_box
  68. def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
  69. # rescale coords by stride
  70. gt_box_s = gt_box / stride
  71. anchor_s = anchor / stride
  72. # compute deltas
  73. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.cfg['reg_max'] - 1)
  74. gt_left = gt_ltrb_s.to(torch.long)
  75. gt_right = gt_left + 1
  76. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  77. weight_right = 1 - weight_left
  78. # loss left
  79. loss_left = F.cross_entropy(
  80. pred_reg.view(-1, self.cfg['reg_max']),
  81. gt_left.view(-1),
  82. reduction='none').view(gt_left.shape) * weight_left
  83. # loss right
  84. loss_right = F.cross_entropy(
  85. pred_reg.view(-1, self.cfg['reg_max']),
  86. gt_right.view(-1),
  87. reduction='none').view(gt_left.shape) * weight_right
  88. loss_dfl = (loss_left + loss_right).mean(-1)
  89. if bbox_weight is not None:
  90. loss_dfl *= bbox_weight
  91. return loss_dfl
  92. def loss_bboxes_aux(self, pred_delta, gt_box, anchors, stride_tensors):
  93. gt_delta_tl = (anchors - gt_box[..., :2]) / stride_tensors
  94. gt_delta_rb = (gt_box[..., 2:] - anchors) / stride_tensors
  95. gt_delta = torch.cat([gt_delta_tl, gt_delta_rb], dim=1)
  96. loss_box_aux = F.l1_loss(pred_delta, gt_delta, reduction='none')
  97. return loss_box_aux
  98. # ----------------- Loss with TAL assigner -----------------
  99. def tal_loss(self, outputs, targets, epoch=0):
  100. """ Compute loss with TAL assigner """
  101. bs = outputs['pred_cls'][0].shape[0]
  102. device = outputs['pred_cls'][0].device
  103. anchors = torch.cat(outputs['anchors'], dim=0)
  104. num_anchors = anchors.shape[0]
  105. # preds: [B, M, C]
  106. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  107. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  108. box_preds = torch.cat(outputs['pred_box'], dim=1)
  109. # --------------- label assignment ---------------
  110. gt_label_targets = []
  111. gt_score_targets = []
  112. gt_bbox_targets = []
  113. fg_masks = []
  114. for batch_idx in range(bs):
  115. tgt_labels = targets[batch_idx]["labels"].to(device)
  116. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  117. # check target
  118. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  119. # There is no valid gt
  120. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
  121. gt_label = cls_preds.new_zeros((1, num_anchors,)) #[1, M,]
  122. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
  123. gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
  124. else:
  125. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  126. tgt_bboxes = tgt_bboxes[None] # [1, Mp, 4]
  127. (
  128. gt_label, #[1, M]
  129. gt_box, #[1, M, 4]
  130. gt_score, #[1, M, C]
  131. fg_mask, #[1, M,]
  132. _
  133. ) = self.tal_matcher(
  134. pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
  135. pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
  136. anc_points = anchors,
  137. gt_labels = tgt_labels,
  138. gt_bboxes = tgt_bboxes
  139. )
  140. gt_label_targets.append(gt_label)
  141. gt_score_targets.append(gt_score)
  142. gt_bbox_targets.append(gt_box)
  143. fg_masks.append(fg_mask)
  144. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  145. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  146. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  147. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  148. gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
  149. gt_label_targets = torch.where(fg_masks > 0, gt_label_targets, torch.full_like(gt_label_targets, self.num_classes))
  150. gt_labels_one_hot = F.one_hot(gt_label_targets.long(), self.num_classes + 1)[..., :-1]
  151. bbox_weight = gt_score_targets[fg_masks].sum(-1)
  152. num_fgs = max(gt_score_targets.sum(), 1)
  153. # average loss normalizer across all the GPUs
  154. if is_dist_avail_and_initialized():
  155. torch.distributed.all_reduce(num_fgs)
  156. num_fgs = max(num_fgs / get_world_size(), 1.0)
  157. # update loss normalizer with EMA
  158. if self.use_ema_update:
  159. normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
  160. else:
  161. normalizer = num_fgs
  162. # ------------------ Classification loss ------------------
  163. cls_preds = cls_preds.view(-1, self.num_classes)
  164. loss_cls = self.loss_classes(cls_preds, gt_score_targets, gt_labels_one_hot, vfl=False)
  165. loss_cls = loss_cls.sum() / normalizer
  166. # ------------------ Regression loss ------------------
  167. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  168. box_targets_pos = gt_bbox_targets[fg_masks]
  169. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
  170. loss_box = loss_box.sum() / normalizer
  171. # ------------------ Distribution focal loss ------------------
  172. ## process anchors
  173. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  174. ## process stride tensors
  175. strides = torch.cat(outputs['stride_tensor'], dim=0)
  176. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  177. ## fg preds
  178. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  179. anchors_pos = anchors[fg_masks]
  180. strides_pos = strides[fg_masks]
  181. ## compute dfl
  182. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets_pos, anchors_pos, strides_pos, bbox_weight)
  183. loss_dfl = loss_dfl.sum() / normalizer
  184. # total loss
  185. losses = self.loss_cls_weight['tal'] * loss_cls + \
  186. self.loss_box_weight['tal'] * loss_box + \
  187. self.loss_dfl_weight['tal'] * loss_dfl
  188. loss_dict = dict(
  189. loss_cls = loss_cls,
  190. loss_box = loss_box,
  191. loss_dfl = loss_dfl,
  192. losses = losses
  193. )
  194. # ------------------ Aux regression loss ------------------
  195. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  196. ## delta_preds
  197. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  198. delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
  199. ## aux loss
  200. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets_pos, anchors_pos, strides_pos)
  201. loss_box_aux = loss_box_aux.sum() / num_fgs
  202. losses += loss_box_aux
  203. loss_dict['loss_box_aux'] = loss_box_aux
  204. return loss_dict
  205. # ----------------- Loss with SimOTA assigner -----------------
  206. def ota_loss(self, outputs, targets, epoch=0):
  207. """ Compute loss with SimOTA assigner """
  208. bs = outputs['pred_cls'][0].shape[0]
  209. device = outputs['pred_cls'][0].device
  210. fpn_strides = outputs['strides']
  211. anchors = outputs['anchors']
  212. num_anchors = sum([ab.shape[0] for ab in anchors])
  213. # preds: [B, M, C]
  214. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  215. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  216. box_preds = torch.cat(outputs['pred_box'], dim=1)
  217. # --------------- label assignment ---------------
  218. cls_targets = []
  219. box_targets = []
  220. fg_masks = []
  221. for batch_idx in range(bs):
  222. tgt_labels = targets[batch_idx]["labels"].to(device)
  223. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  224. # check target
  225. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  226. # There is no valid gt
  227. cls_target = cls_preds.new_zeros((num_anchors, self.num_classes))
  228. box_target = cls_preds.new_zeros((0, 4))
  229. fg_mask = cls_preds.new_zeros(num_anchors).bool()
  230. else:
  231. (
  232. fg_mask,
  233. assigned_labels,
  234. assigned_ious,
  235. assigned_indexs
  236. ) = self.ota_matcher(
  237. fpn_strides = fpn_strides,
  238. anchors = anchors,
  239. pred_cls = cls_preds[batch_idx],
  240. pred_box = box_preds[batch_idx],
  241. tgt_labels = tgt_labels,
  242. tgt_bboxes = tgt_bboxes
  243. )
  244. # prepare cls targets
  245. assigned_labels = F.one_hot(assigned_labels.long(), self.num_classes)
  246. assigned_labels = assigned_labels * assigned_ious.unsqueeze(-1)
  247. cls_target = assigned_labels.new_zeros((num_anchors, self.num_classes))
  248. cls_target[fg_mask] = assigned_labels
  249. # prepare box targets
  250. box_target = tgt_bboxes[assigned_indexs]
  251. cls_targets.append(cls_target)
  252. box_targets.append(box_target)
  253. fg_masks.append(fg_mask)
  254. cls_targets = torch.cat(cls_targets, 0)
  255. box_targets = torch.cat(box_targets, 0)
  256. fg_masks = torch.cat(fg_masks, 0)
  257. num_fgs = fg_masks.sum()
  258. # average loss normalizer across all the GPUs
  259. if is_dist_avail_and_initialized():
  260. torch.distributed.all_reduce(num_fgs)
  261. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  262. # update loss normalizer with EMA
  263. if self.use_ema_update:
  264. normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
  265. else:
  266. normalizer = num_fgs
  267. # ------------------ Classification loss ------------------
  268. cls_preds = cls_preds.view(-1, self.num_classes)
  269. loss_cls = self.loss_classes(cls_preds, cls_targets)
  270. loss_cls = loss_cls.sum() / normalizer
  271. # ------------------ Regression loss ------------------
  272. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  273. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  274. loss_box = loss_box.sum() / normalizer
  275. # ------------------ Distribution focal loss ------------------
  276. ## process anchors
  277. anchors = torch.cat(anchors, dim=0)
  278. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  279. ## process stride tensors
  280. strides = torch.cat(outputs['stride_tensor'], dim=0)
  281. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  282. ## fg preds
  283. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  284. anchors_pos = anchors[fg_masks]
  285. strides_pos = strides[fg_masks]
  286. ## compute dfl
  287. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
  288. loss_dfl = loss_dfl.sum() / normalizer
  289. # total loss
  290. losses = self.loss_cls_weight['ota'] * loss_cls + \
  291. self.loss_box_weight['ota'] * loss_box + \
  292. self.loss_dfl_weight['ota'] * loss_dfl
  293. loss_dict = dict(
  294. loss_cls = loss_cls,
  295. loss_box = loss_box,
  296. loss_dfl = loss_dfl,
  297. losses = losses
  298. )
  299. # ------------------ Aux regression loss ------------------
  300. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  301. ## delta_preds
  302. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  303. delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
  304. ## aux loss
  305. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets, anchors_pos, strides_pos)
  306. loss_box_aux = loss_box_aux.sum() / num_fgs
  307. losses += loss_box_aux
  308. loss_dict['loss_box_aux'] = loss_box_aux
  309. return loss_dict
  310. def build_criterion(args, cfg, device, num_classes):
  311. criterion = Criterion(
  312. args=args,
  313. cfg=cfg,
  314. device=device,
  315. num_classes=num_classes
  316. )
  317. return criterion
  318. if __name__ == "__main__":
  319. pass