RTCDet-v2: My Second Empirical Study of Real-Time Convolutional Object Detectors.
Model
Scale
Batch
APtest 0.5:0.95
APtest 0.5
APval 0.5:0.95
APval 0.5
FLOPs (G)
Params (M)
Weight
RTCDetv2-N
640
8xb16
RTCDetv2-T
640
8xb16
RTCDetv2-S
640
8xb16
RTCDetv2-M
640
8xb16
RTCDetv2-L
640
8xb16
RTCDetv2-X
640
Model
Scale
Batch
APtest 0.5:0.95
APtest 0.5
APval 0.5:0.95
APval 0.5
FLOPs (G)
Params (M)
Weight
RTCDetv2-P
320
8xb16
RTCDetv2-P
416
8xb16
RTCDetv2-P
512
8xb16
RTCDetv2-P
640
8xb16
For training, we train my RTCDetv2 series series with 300 epochs on COCO.
For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOX, but we remove the rotation transformation which is used in YOLOX's strong augmentation.
For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64.
For learning rate scheduler, we use linear decay scheduler.
Due to my limited computing resources, I can not train RTCDetv2-X with the setting of batch size=128.