engine.py 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.misc import MetricLogger, SmoothedValue
  11. from utils.vis_tools import vis_data
  12. # ----------------- Evaluator Components -----------------
  13. from evaluator.build import build_evluator
  14. # ----------------- Optimizer & LrScheduler Components -----------------
  15. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  16. from utils.solver.lr_scheduler import build_lr_scheduler
  17. # ----------------- Dataset Components -----------------
  18. from dataset.build import build_dataset, build_transform
  19. # ----------------------- Det trainers -----------------------
  20. ## YOLOv8 Trainer
  21. class Yolov8Trainer(object):
  22. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  23. # ------------------- basic parameters -------------------
  24. self.args = args
  25. self.epoch = 0
  26. self.best_map = -1.
  27. self.device = device
  28. self.criterion = criterion
  29. self.world_size = world_size
  30. self.heavy_eval = False
  31. self.last_opt_step = 0
  32. self.clip_grad = 10
  33. # weak augmentatino stage
  34. self.second_stage = False
  35. self.third_stage = False
  36. self.second_stage_epoch = args.no_aug_epoch
  37. self.third_stage_epoch = args.no_aug_epoch // 2
  38. # path to save model
  39. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  40. os.makedirs(self.path_to_save, exist_ok=True)
  41. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  42. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  43. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  44. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  45. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  46. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  47. self.data_cfg = data_cfg
  48. self.model_cfg = model_cfg
  49. self.trans_cfg = trans_cfg
  50. # ---------------------------- Build Transform ----------------------------
  51. self.train_transform, self.trans_cfg = build_transform(
  52. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  53. self.val_transform, _ = build_transform(
  54. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  55. # ---------------------------- Build Dataset & Dataloader ----------------------------
  56. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  57. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  58. # ---------------------------- Build Evaluator ----------------------------
  59. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  60. # ---------------------------- Build Grad. Scaler ----------------------------
  61. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  62. # ---------------------------- Build Optimizer ----------------------------
  63. accumulate = max(1, round(64 / self.args.batch_size))
  64. print('Grad Accumulate: {}'.format(accumulate))
  65. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  66. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  67. # ---------------------------- Build LR Scheduler ----------------------------
  68. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  69. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  70. if self.args.resume and self.args.resume != 'None':
  71. self.lr_scheduler.step()
  72. # ---------------------------- Build Model-EMA ----------------------------
  73. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  74. print('Build ModelEMA ...')
  75. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  76. else:
  77. self.model_ema = None
  78. def train(self, model):
  79. for epoch in range(self.start_epoch, self.args.max_epoch):
  80. if self.args.distributed:
  81. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  82. # check second stage
  83. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  84. self.check_second_stage()
  85. # save model of the last mosaic epoch
  86. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  87. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  88. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  89. torch.save({'model': model.state_dict(),
  90. 'mAP': round(self.evaluator.map*100, 1),
  91. 'optimizer': self.optimizer.state_dict(),
  92. 'epoch': self.epoch,
  93. 'args': self.args},
  94. checkpoint_path)
  95. # check third stage
  96. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  97. self.check_third_stage()
  98. # save model of the last mosaic epoch
  99. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  100. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  101. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  102. torch.save({'model': model.state_dict(),
  103. 'mAP': round(self.evaluator.map*100, 1),
  104. 'optimizer': self.optimizer.state_dict(),
  105. 'epoch': self.epoch,
  106. 'args': self.args},
  107. checkpoint_path)
  108. # train one epoch
  109. self.epoch = epoch
  110. self.train_one_epoch(model)
  111. # eval one epoch
  112. if self.heavy_eval:
  113. model_eval = model.module if self.args.distributed else model
  114. self.eval(model_eval)
  115. else:
  116. model_eval = model.module if self.args.distributed else model
  117. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  118. self.eval(model_eval)
  119. if self.args.debug:
  120. print("For debug mode, we only train 1 epoch")
  121. break
  122. def eval(self, model):
  123. # chech model
  124. model_eval = model if self.model_ema is None else self.model_ema.ema
  125. if distributed_utils.is_main_process():
  126. # check evaluator
  127. if self.evaluator is None:
  128. print('No evaluator ... save model and go on training.')
  129. print('Saving state, epoch: {}'.format(self.epoch))
  130. weight_name = '{}_no_eval.pth'.format(self.args.model)
  131. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  132. torch.save({'model': model_eval.state_dict(),
  133. 'mAP': -1.,
  134. 'optimizer': self.optimizer.state_dict(),
  135. 'epoch': self.epoch,
  136. 'args': self.args},
  137. checkpoint_path)
  138. else:
  139. print('eval ...')
  140. # set eval mode
  141. model_eval.trainable = False
  142. model_eval.eval()
  143. # evaluate
  144. with torch.no_grad():
  145. self.evaluator.evaluate(model_eval)
  146. # save model
  147. cur_map = self.evaluator.map
  148. if cur_map > self.best_map:
  149. # update best-map
  150. self.best_map = cur_map
  151. # save model
  152. print('Saving state, epoch:', self.epoch)
  153. weight_name = '{}_best.pth'.format(self.args.model)
  154. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  155. torch.save({'model': model_eval.state_dict(),
  156. 'mAP': round(self.best_map*100, 1),
  157. 'optimizer': self.optimizer.state_dict(),
  158. 'epoch': self.epoch,
  159. 'args': self.args},
  160. checkpoint_path)
  161. # set train mode.
  162. model_eval.trainable = True
  163. model_eval.train()
  164. if self.args.distributed:
  165. # wait for all processes to synchronize
  166. dist.barrier()
  167. def train_one_epoch(self, model):
  168. # basic parameters
  169. epoch_size = len(self.train_loader)
  170. img_size = self.args.img_size
  171. t0 = time.time()
  172. nw = epoch_size * self.args.wp_epoch
  173. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  174. # train one epoch
  175. for iter_i, (images, targets) in enumerate(self.train_loader):
  176. ni = iter_i + self.epoch * epoch_size
  177. # Warmup
  178. if ni <= nw:
  179. xi = [0, nw] # x interp
  180. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  181. for j, x in enumerate(self.optimizer.param_groups):
  182. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  183. x['lr'] = np.interp(
  184. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  185. if 'momentum' in x:
  186. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  187. # to device
  188. images = images.to(self.device, non_blocking=True).float() / 255.
  189. # Multi scale
  190. if self.args.multi_scale:
  191. images, targets, img_size = self.rescale_image_targets(
  192. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  193. else:
  194. targets = self.refine_targets(targets, self.args.min_box_size)
  195. # visualize train targets
  196. if self.args.vis_tgt:
  197. vis_data(images*255, targets)
  198. # inference
  199. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  200. outputs = model(images)
  201. # loss
  202. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  203. losses = loss_dict['losses']
  204. losses *= images.shape[0] # loss * bs
  205. # reduce
  206. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  207. # gradient averaged between devices in DDP mode
  208. losses *= distributed_utils.get_world_size()
  209. # backward
  210. self.scaler.scale(losses).backward()
  211. # Optimize
  212. if ni - self.last_opt_step >= accumulate:
  213. if self.clip_grad > 0:
  214. # unscale gradients
  215. self.scaler.unscale_(self.optimizer)
  216. # clip gradients
  217. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  218. # optimizer.step
  219. self.scaler.step(self.optimizer)
  220. self.scaler.update()
  221. self.optimizer.zero_grad()
  222. # ema
  223. if self.model_ema is not None:
  224. self.model_ema.update(model)
  225. self.last_opt_step = ni
  226. # display
  227. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  228. t1 = time.time()
  229. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  230. # basic infor
  231. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  232. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  233. log += '[lr: {:.6f}]'.format(cur_lr[2])
  234. # loss infor
  235. for k in loss_dict_reduced.keys():
  236. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  237. # other infor
  238. log += '[time: {:.2f}]'.format(t1 - t0)
  239. log += '[size: {}]'.format(img_size)
  240. # print log infor
  241. print(log, flush=True)
  242. t0 = time.time()
  243. if self.args.debug:
  244. print("For debug mode, we only train 1 iteration")
  245. break
  246. self.lr_scheduler.step()
  247. def check_second_stage(self):
  248. # set second stage
  249. print('============== Second stage of Training ==============')
  250. self.second_stage = True
  251. # close mosaic augmentation
  252. if self.train_loader.dataset.mosaic_prob > 0.:
  253. print(' - Close < Mosaic Augmentation > ...')
  254. self.train_loader.dataset.mosaic_prob = 0.
  255. self.heavy_eval = True
  256. # close mixup augmentation
  257. if self.train_loader.dataset.mixup_prob > 0.:
  258. print(' - Close < Mixup Augmentation > ...')
  259. self.train_loader.dataset.mixup_prob = 0.
  260. self.heavy_eval = True
  261. # close rotation augmentation
  262. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  263. print(' - Close < degress of rotation > ...')
  264. self.trans_cfg['degrees'] = 0.0
  265. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  266. print(' - Close < shear of rotation >...')
  267. self.trans_cfg['shear'] = 0.0
  268. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  269. print(' - Close < perspective of rotation > ...')
  270. self.trans_cfg['perspective'] = 0.0
  271. # build a new transform for second stage
  272. print(' - Rebuild transforms ...')
  273. self.train_transform, self.trans_cfg = build_transform(
  274. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  275. self.train_loader.dataset.transform = self.train_transform
  276. def check_third_stage(self):
  277. # set third stage
  278. print('============== Third stage of Training ==============')
  279. self.third_stage = True
  280. # close random affine
  281. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  282. print(' - Close < translate of affine > ...')
  283. self.trans_cfg['translate'] = 0.0
  284. if 'scale' in self.trans_cfg.keys():
  285. print(' - Close < scale of affine >...')
  286. self.trans_cfg['scale'] = [1.0, 1.0]
  287. # build a new transform for second stage
  288. print(' - Rebuild transforms ...')
  289. self.train_transform, self.trans_cfg = build_transform(
  290. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  291. self.train_loader.dataset.transform = self.train_transform
  292. def refine_targets(self, targets, min_box_size):
  293. # rescale targets
  294. for tgt in targets:
  295. boxes = tgt["boxes"].clone()
  296. labels = tgt["labels"].clone()
  297. # refine tgt
  298. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  299. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  300. keep = (min_tgt_size >= min_box_size)
  301. tgt["boxes"] = boxes[keep]
  302. tgt["labels"] = labels[keep]
  303. return targets
  304. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  305. """
  306. Deployed for Multi scale trick.
  307. """
  308. if isinstance(stride, int):
  309. max_stride = stride
  310. elif isinstance(stride, list):
  311. max_stride = max(stride)
  312. # During training phase, the shape of input image is square.
  313. old_img_size = images.shape[-1]
  314. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  315. new_img_size = new_img_size // max_stride * max_stride # size
  316. if new_img_size / old_img_size != 1:
  317. # interpolate
  318. images = torch.nn.functional.interpolate(
  319. input=images,
  320. size=new_img_size,
  321. mode='bilinear',
  322. align_corners=False)
  323. # rescale targets
  324. for tgt in targets:
  325. boxes = tgt["boxes"].clone()
  326. labels = tgt["labels"].clone()
  327. boxes = torch.clamp(boxes, 0, old_img_size)
  328. # rescale box
  329. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  330. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  331. # refine tgt
  332. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  333. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  334. keep = (min_tgt_size >= min_box_size)
  335. tgt["boxes"] = boxes[keep]
  336. tgt["labels"] = labels[keep]
  337. return images, targets, new_img_size
  338. ## YOLOX Trainer
  339. class YoloxTrainer(object):
  340. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  341. # ------------------- basic parameters -------------------
  342. self.args = args
  343. self.epoch = 0
  344. self.best_map = -1.
  345. self.device = device
  346. self.criterion = criterion
  347. self.world_size = world_size
  348. self.grad_accumulate = args.grad_accumulate
  349. self.no_aug_epoch = args.no_aug_epoch
  350. self.heavy_eval = False
  351. # weak augmentatino stage
  352. self.second_stage = False
  353. self.third_stage = False
  354. self.second_stage_epoch = args.no_aug_epoch
  355. self.third_stage_epoch = args.no_aug_epoch // 2
  356. # path to save model
  357. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  358. os.makedirs(self.path_to_save, exist_ok=True)
  359. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  360. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  361. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  362. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  363. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  364. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  365. self.data_cfg = data_cfg
  366. self.model_cfg = model_cfg
  367. self.trans_cfg = trans_cfg
  368. # ---------------------------- Build Transform ----------------------------
  369. self.train_transform, self.trans_cfg = build_transform(
  370. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  371. self.val_transform, _ = build_transform(
  372. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  373. # ---------------------------- Build Dataset & Dataloader ----------------------------
  374. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  375. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  376. # ---------------------------- Build Evaluator ----------------------------
  377. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  378. # ---------------------------- Build Grad. Scaler ----------------------------
  379. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  380. # ---------------------------- Build Optimizer ----------------------------
  381. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  382. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  383. # ---------------------------- Build LR Scheduler ----------------------------
  384. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  385. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  386. if self.args.resume and self.args.resume != 'None':
  387. self.lr_scheduler.step()
  388. # ---------------------------- Build Model-EMA ----------------------------
  389. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  390. print('Build ModelEMA ...')
  391. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  392. else:
  393. self.model_ema = None
  394. def train(self, model):
  395. for epoch in range(self.start_epoch, self.args.max_epoch):
  396. if self.args.distributed:
  397. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  398. # check second stage
  399. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  400. self.check_second_stage()
  401. # save model of the last mosaic epoch
  402. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  403. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  404. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  405. torch.save({'model': model.state_dict(),
  406. 'mAP': round(self.evaluator.map*100, 1),
  407. 'optimizer': self.optimizer.state_dict(),
  408. 'epoch': self.epoch,
  409. 'args': self.args},
  410. checkpoint_path)
  411. # check third stage
  412. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  413. self.check_third_stage()
  414. # save model of the last mosaic epoch
  415. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  416. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  417. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  418. torch.save({'model': model.state_dict(),
  419. 'mAP': round(self.evaluator.map*100, 1),
  420. 'optimizer': self.optimizer.state_dict(),
  421. 'epoch': self.epoch,
  422. 'args': self.args},
  423. checkpoint_path)
  424. # train one epoch
  425. self.epoch = epoch
  426. self.train_one_epoch(model)
  427. # eval one epoch
  428. if self.heavy_eval:
  429. model_eval = model.module if self.args.distributed else model
  430. self.eval(model_eval)
  431. else:
  432. model_eval = model.module if self.args.distributed else model
  433. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  434. self.eval(model_eval)
  435. if self.args.debug:
  436. print("For debug mode, we only train 1 epoch")
  437. break
  438. def eval(self, model):
  439. # chech model
  440. model_eval = model if self.model_ema is None else self.model_ema.ema
  441. if distributed_utils.is_main_process():
  442. # check evaluator
  443. if self.evaluator is None:
  444. print('No evaluator ... save model and go on training.')
  445. print('Saving state, epoch: {}'.format(self.epoch))
  446. weight_name = '{}_no_eval.pth'.format(self.args.model)
  447. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  448. torch.save({'model': model_eval.state_dict(),
  449. 'mAP': -1.,
  450. 'optimizer': self.optimizer.state_dict(),
  451. 'epoch': self.epoch,
  452. 'args': self.args},
  453. checkpoint_path)
  454. else:
  455. print('eval ...')
  456. # set eval mode
  457. model_eval.trainable = False
  458. model_eval.eval()
  459. # evaluate
  460. with torch.no_grad():
  461. self.evaluator.evaluate(model_eval)
  462. # save model
  463. cur_map = self.evaluator.map
  464. if cur_map > self.best_map:
  465. # update best-map
  466. self.best_map = cur_map
  467. # save model
  468. print('Saving state, epoch:', self.epoch)
  469. weight_name = '{}_best.pth'.format(self.args.model)
  470. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  471. torch.save({'model': model_eval.state_dict(),
  472. 'mAP': round(self.best_map*100, 1),
  473. 'optimizer': self.optimizer.state_dict(),
  474. 'epoch': self.epoch,
  475. 'args': self.args},
  476. checkpoint_path)
  477. # set train mode.
  478. model_eval.trainable = True
  479. model_eval.train()
  480. if self.args.distributed:
  481. # wait for all processes to synchronize
  482. dist.barrier()
  483. def train_one_epoch(self, model):
  484. # basic parameters
  485. epoch_size = len(self.train_loader)
  486. img_size = self.args.img_size
  487. t0 = time.time()
  488. nw = epoch_size * self.args.wp_epoch
  489. # Train one epoch
  490. for iter_i, (images, targets) in enumerate(self.train_loader):
  491. ni = iter_i + self.epoch * epoch_size
  492. # Warmup
  493. if ni <= nw:
  494. xi = [0, nw] # x interp
  495. for j, x in enumerate(self.optimizer.param_groups):
  496. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  497. x['lr'] = np.interp(
  498. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  499. if 'momentum' in x:
  500. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  501. # To device
  502. images = images.to(self.device, non_blocking=True).float() / 255.
  503. # Multi scale
  504. if self.args.multi_scale and ni % 10 == 0:
  505. images, targets, img_size = self.rescale_image_targets(
  506. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  507. else:
  508. targets = self.refine_targets(targets, self.args.min_box_size)
  509. # Visualize train targets
  510. if self.args.vis_tgt:
  511. vis_data(images*255, targets)
  512. # Inference
  513. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  514. outputs = model(images)
  515. # Compute loss
  516. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  517. losses = loss_dict['losses']
  518. # Grad Accu
  519. if self.grad_accumulate > 1:
  520. losses /= self.grad_accumulate
  521. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  522. # Backward
  523. self.scaler.scale(losses).backward()
  524. # Optimize
  525. if ni % self.grad_accumulate == 0:
  526. self.scaler.step(self.optimizer)
  527. self.scaler.update()
  528. self.optimizer.zero_grad()
  529. # ema
  530. if self.model_ema is not None:
  531. self.model_ema.update(model)
  532. # Logs
  533. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  534. t1 = time.time()
  535. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  536. # basic infor
  537. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  538. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  539. log += '[lr: {:.6f}]'.format(cur_lr[2])
  540. # loss infor
  541. for k in loss_dict_reduced.keys():
  542. loss_val = loss_dict_reduced[k]
  543. if k == 'losses':
  544. loss_val *= self.grad_accumulate
  545. log += '[{}: {:.2f}]'.format(k, loss_val)
  546. # other infor
  547. log += '[time: {:.2f}]'.format(t1 - t0)
  548. log += '[size: {}]'.format(img_size)
  549. # print log infor
  550. print(log, flush=True)
  551. t0 = time.time()
  552. if self.args.debug:
  553. print("For debug mode, we only train 1 iteration")
  554. break
  555. # LR Schedule
  556. if not self.second_stage:
  557. self.lr_scheduler.step()
  558. def check_second_stage(self):
  559. # set second stage
  560. print('============== Second stage of Training ==============')
  561. self.second_stage = True
  562. # close mosaic augmentation
  563. if self.train_loader.dataset.mosaic_prob > 0.:
  564. print(' - Close < Mosaic Augmentation > ...')
  565. self.train_loader.dataset.mosaic_prob = 0.
  566. self.heavy_eval = True
  567. # close mixup augmentation
  568. if self.train_loader.dataset.mixup_prob > 0.:
  569. print(' - Close < Mixup Augmentation > ...')
  570. self.train_loader.dataset.mixup_prob = 0.
  571. self.heavy_eval = True
  572. # close rotation augmentation
  573. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  574. print(' - Close < degress of rotation > ...')
  575. self.trans_cfg['degrees'] = 0.0
  576. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  577. print(' - Close < shear of rotation >...')
  578. self.trans_cfg['shear'] = 0.0
  579. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  580. print(' - Close < perspective of rotation > ...')
  581. self.trans_cfg['perspective'] = 0.0
  582. # build a new transform for second stage
  583. print(' - Rebuild transforms ...')
  584. self.train_transform, self.trans_cfg = build_transform(
  585. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  586. self.train_loader.dataset.transform = self.train_transform
  587. def check_third_stage(self):
  588. # set third stage
  589. print('============== Third stage of Training ==============')
  590. self.third_stage = True
  591. # close random affine
  592. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  593. print(' - Close < translate of affine > ...')
  594. self.trans_cfg['translate'] = 0.0
  595. if 'scale' in self.trans_cfg.keys():
  596. print(' - Close < scale of affine >...')
  597. self.trans_cfg['scale'] = [1.0, 1.0]
  598. # build a new transform for second stage
  599. print(' - Rebuild transforms ...')
  600. self.train_transform, self.trans_cfg = build_transform(
  601. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  602. self.train_loader.dataset.transform = self.train_transform
  603. def refine_targets(self, targets, min_box_size):
  604. # rescale targets
  605. for tgt in targets:
  606. boxes = tgt["boxes"].clone()
  607. labels = tgt["labels"].clone()
  608. # refine tgt
  609. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  610. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  611. keep = (min_tgt_size >= min_box_size)
  612. tgt["boxes"] = boxes[keep]
  613. tgt["labels"] = labels[keep]
  614. return targets
  615. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  616. """
  617. Deployed for Multi scale trick.
  618. """
  619. if isinstance(stride, int):
  620. max_stride = stride
  621. elif isinstance(stride, list):
  622. max_stride = max(stride)
  623. # During training phase, the shape of input image is square.
  624. old_img_size = images.shape[-1]
  625. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  626. new_img_size = new_img_size // max_stride * max_stride # size
  627. if new_img_size / old_img_size != 1:
  628. # interpolate
  629. images = torch.nn.functional.interpolate(
  630. input=images,
  631. size=new_img_size,
  632. mode='bilinear',
  633. align_corners=False)
  634. # rescale targets
  635. for tgt in targets:
  636. boxes = tgt["boxes"].clone()
  637. labels = tgt["labels"].clone()
  638. boxes = torch.clamp(boxes, 0, old_img_size)
  639. # rescale box
  640. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  641. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  642. # refine tgt
  643. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  644. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  645. keep = (min_tgt_size >= min_box_size)
  646. tgt["boxes"] = boxes[keep]
  647. tgt["labels"] = labels[keep]
  648. return images, targets, new_img_size
  649. ## Real-time Convolutional Object Detector Trainer
  650. class RTCTrainer(object):
  651. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  652. # ------------------- basic parameters -------------------
  653. self.args = args
  654. self.epoch = 0
  655. self.best_map = -1.
  656. self.device = device
  657. self.criterion = criterion
  658. self.world_size = world_size
  659. self.grad_accumulate = args.grad_accumulate
  660. self.clip_grad = 35
  661. self.heavy_eval = False
  662. # weak augmentatino stage
  663. self.second_stage = False
  664. self.third_stage = False
  665. self.second_stage_epoch = args.no_aug_epoch
  666. self.third_stage_epoch = args.no_aug_epoch // 2
  667. # path to save model
  668. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  669. os.makedirs(self.path_to_save, exist_ok=True)
  670. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  671. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  672. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  673. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  674. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  675. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  676. self.data_cfg = data_cfg
  677. self.model_cfg = model_cfg
  678. self.trans_cfg = trans_cfg
  679. # ---------------------------- Build Transform ----------------------------
  680. self.train_transform, self.trans_cfg = build_transform(
  681. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  682. self.val_transform, _ = build_transform(
  683. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  684. # ---------------------------- Build Dataset & Dataloader ----------------------------
  685. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  686. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  687. # ---------------------------- Build Evaluator ----------------------------
  688. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  689. # ---------------------------- Build Grad. Scaler ----------------------------
  690. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  691. # ---------------------------- Build Optimizer ----------------------------
  692. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  693. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  694. # ---------------------------- Build LR Scheduler ----------------------------
  695. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  696. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  697. if self.args.resume and self.args.resume != 'None':
  698. self.lr_scheduler.step()
  699. # ---------------------------- Build Model-EMA ----------------------------
  700. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  701. print('Build ModelEMA ...')
  702. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  703. else:
  704. self.model_ema = None
  705. def train(self, model):
  706. for epoch in range(self.start_epoch, self.args.max_epoch):
  707. if self.args.distributed:
  708. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  709. # check second stage
  710. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  711. self.check_second_stage()
  712. # save model of the last mosaic epoch
  713. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  714. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  715. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  716. torch.save({'model': model.state_dict(),
  717. 'mAP': round(self.evaluator.map*100, 1),
  718. 'optimizer': self.optimizer.state_dict(),
  719. 'epoch': self.epoch,
  720. 'args': self.args},
  721. checkpoint_path)
  722. # check third stage
  723. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  724. self.check_third_stage()
  725. # save model of the last mosaic epoch
  726. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  727. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  728. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  729. torch.save({'model': model.state_dict(),
  730. 'mAP': round(self.evaluator.map*100, 1),
  731. 'optimizer': self.optimizer.state_dict(),
  732. 'epoch': self.epoch,
  733. 'args': self.args},
  734. checkpoint_path)
  735. # train one epoch
  736. self.epoch = epoch
  737. self.train_one_epoch(model)
  738. # eval one epoch
  739. if self.heavy_eval:
  740. model_eval = model.module if self.args.distributed else model
  741. self.eval(model_eval)
  742. else:
  743. model_eval = model.module if self.args.distributed else model
  744. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  745. self.eval(model_eval)
  746. if self.args.debug:
  747. print("For debug mode, we only train 1 epoch")
  748. break
  749. def eval(self, model):
  750. # chech model
  751. model_eval = model if self.model_ema is None else self.model_ema.ema
  752. if distributed_utils.is_main_process():
  753. # check evaluator
  754. if self.evaluator is None:
  755. print('No evaluator ... save model and go on training.')
  756. print('Saving state, epoch: {}'.format(self.epoch))
  757. weight_name = '{}_no_eval.pth'.format(self.args.model)
  758. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  759. torch.save({'model': model_eval.state_dict(),
  760. 'mAP': -1.,
  761. 'optimizer': self.optimizer.state_dict(),
  762. 'epoch': self.epoch,
  763. 'args': self.args},
  764. checkpoint_path)
  765. else:
  766. print('eval ...')
  767. # set eval mode
  768. model_eval.trainable = False
  769. model_eval.eval()
  770. # evaluate
  771. with torch.no_grad():
  772. self.evaluator.evaluate(model_eval)
  773. # save model
  774. cur_map = self.evaluator.map
  775. if cur_map > self.best_map:
  776. # update best-map
  777. self.best_map = cur_map
  778. # save model
  779. print('Saving state, epoch:', self.epoch)
  780. weight_name = '{}_best.pth'.format(self.args.model)
  781. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  782. torch.save({'model': model_eval.state_dict(),
  783. 'mAP': round(self.best_map*100, 1),
  784. 'optimizer': self.optimizer.state_dict(),
  785. 'epoch': self.epoch,
  786. 'args': self.args},
  787. checkpoint_path)
  788. # set train mode.
  789. model_eval.trainable = True
  790. model_eval.train()
  791. if self.args.distributed:
  792. # wait for all processes to synchronize
  793. dist.barrier()
  794. def train_one_epoch(self, model):
  795. metric_logger = MetricLogger(delimiter=" ")
  796. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  797. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  798. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  799. epoch_size = len(self.train_loader)
  800. print_freq = 10
  801. # basic parameters
  802. epoch_size = len(self.train_loader)
  803. img_size = self.args.img_size
  804. nw = epoch_size * self.args.wp_epoch
  805. # Train one epoch
  806. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  807. ni = iter_i + self.epoch * epoch_size
  808. # Warmup
  809. if ni <= nw:
  810. xi = [0, nw] # x interp
  811. for j, x in enumerate(self.optimizer.param_groups):
  812. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  813. x['lr'] = np.interp(
  814. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  815. if 'momentum' in x:
  816. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  817. # To device
  818. images = images.to(self.device, non_blocking=True).float() / 255.
  819. # Multi scale
  820. if self.args.multi_scale:
  821. images, targets, img_size = self.rescale_image_targets(
  822. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  823. else:
  824. targets = self.refine_targets(targets, self.args.min_box_size)
  825. # Visualize train targets
  826. if self.args.vis_tgt:
  827. vis_data(images*255, targets)
  828. # Inference
  829. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  830. outputs = model(images)
  831. # Compute loss
  832. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  833. losses = loss_dict['losses']
  834. # Grad Accumulate
  835. if self.grad_accumulate > 1:
  836. losses /= self.grad_accumulate
  837. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  838. # Backward
  839. self.scaler.scale(losses).backward()
  840. # Optimize
  841. if ni % self.grad_accumulate == 0:
  842. grad_norm = None
  843. if self.clip_grad > 0:
  844. # unscale gradients
  845. self.scaler.unscale_(self.optimizer)
  846. # clip gradients
  847. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  848. # optimizer.step
  849. self.scaler.step(self.optimizer)
  850. self.scaler.update()
  851. self.optimizer.zero_grad()
  852. # ema
  853. if self.model_ema is not None:
  854. self.model_ema.update(model)
  855. # Update log
  856. metric_logger.update(**loss_dict_reduced)
  857. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  858. metric_logger.update(grad_norm=grad_norm)
  859. metric_logger.update(size=img_size)
  860. if self.args.debug:
  861. print("For debug mode, we only train 1 iteration")
  862. break
  863. # LR Schedule
  864. if not self.second_stage:
  865. self.lr_scheduler.step()
  866. # Gather the stats from all processes
  867. metric_logger.synchronize_between_processes()
  868. print("Averaged stats:", metric_logger)
  869. def refine_targets(self, targets, min_box_size):
  870. # rescale targets
  871. for tgt in targets:
  872. boxes = tgt["boxes"].clone()
  873. labels = tgt["labels"].clone()
  874. # refine tgt
  875. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  876. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  877. keep = (min_tgt_size >= min_box_size)
  878. tgt["boxes"] = boxes[keep]
  879. tgt["labels"] = labels[keep]
  880. return targets
  881. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  882. """
  883. Deployed for Multi scale trick.
  884. """
  885. if isinstance(stride, int):
  886. max_stride = stride
  887. elif isinstance(stride, list):
  888. max_stride = max(stride)
  889. # During training phase, the shape of input image is square.
  890. old_img_size = images.shape[-1]
  891. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  892. new_img_size = new_img_size // max_stride * max_stride # size
  893. if new_img_size / old_img_size != 1:
  894. # interpolate
  895. images = torch.nn.functional.interpolate(
  896. input=images,
  897. size=new_img_size,
  898. mode='bilinear',
  899. align_corners=False)
  900. # rescale targets
  901. for tgt in targets:
  902. boxes = tgt["boxes"].clone()
  903. labels = tgt["labels"].clone()
  904. boxes = torch.clamp(boxes, 0, old_img_size)
  905. # rescale box
  906. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  907. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  908. # refine tgt
  909. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  910. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  911. keep = (min_tgt_size >= min_box_size)
  912. tgt["boxes"] = boxes[keep]
  913. tgt["labels"] = labels[keep]
  914. return images, targets, new_img_size
  915. def check_second_stage(self):
  916. # set second stage
  917. print('============== Second stage of Training ==============')
  918. self.second_stage = True
  919. # close mosaic augmentation
  920. if self.train_loader.dataset.mosaic_prob > 0.:
  921. print(' - Close < Mosaic Augmentation > ...')
  922. self.train_loader.dataset.mosaic_prob = 0.
  923. self.heavy_eval = True
  924. # close mixup augmentation
  925. if self.train_loader.dataset.mixup_prob > 0.:
  926. print(' - Close < Mixup Augmentation > ...')
  927. self.train_loader.dataset.mixup_prob = 0.
  928. self.heavy_eval = True
  929. # close rotation augmentation
  930. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  931. print(' - Close < degress of rotation > ...')
  932. self.trans_cfg['degrees'] = 0.0
  933. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  934. print(' - Close < shear of rotation >...')
  935. self.trans_cfg['shear'] = 0.0
  936. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  937. print(' - Close < perspective of rotation > ...')
  938. self.trans_cfg['perspective'] = 0.0
  939. # build a new transform for second stage
  940. print(' - Rebuild transforms ...')
  941. self.train_transform, self.trans_cfg = build_transform(
  942. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  943. self.train_loader.dataset.transform = self.train_transform
  944. def check_third_stage(self):
  945. # set third stage
  946. print('============== Third stage of Training ==============')
  947. self.third_stage = True
  948. # close random affine
  949. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  950. print(' - Close < translate of affine > ...')
  951. self.trans_cfg['translate'] = 0.0
  952. if 'scale' in self.trans_cfg.keys():
  953. print(' - Close < scale of affine >...')
  954. self.trans_cfg['scale'] = [1.0, 1.0]
  955. # build a new transform for second stage
  956. print(' - Rebuild transforms ...')
  957. self.train_transform, self.trans_cfg = build_transform(
  958. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  959. self.train_loader.dataset.transform = self.train_transform
  960. ## Real-time Transformer-based Object Detector Trainer
  961. class RTRTrainer(object):
  962. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  963. # ------------------- Basic parameters -------------------
  964. self.args = args
  965. self.epoch = 0
  966. self.best_map = -1.
  967. self.device = device
  968. self.criterion = criterion
  969. self.world_size = world_size
  970. self.grad_accumulate = args.grad_accumulate
  971. self.clip_grad = 0.1
  972. self.heavy_eval = False
  973. # weak augmentatino stage
  974. self.second_stage = False
  975. self.second_stage_epoch = args.no_aug_epoch
  976. # path to save model
  977. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  978. os.makedirs(self.path_to_save, exist_ok=True)
  979. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  980. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  981. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 2000}
  982. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  983. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  984. self.data_cfg = data_cfg
  985. self.model_cfg = model_cfg
  986. self.trans_cfg = trans_cfg
  987. # ---------------------------- Build Transform ----------------------------
  988. self.train_transform, self.trans_cfg = build_transform(
  989. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['out_stride'][-1], is_train=True)
  990. self.val_transform, _ = build_transform(
  991. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['out_stride'][-1], is_train=False)
  992. # ---------------------------- Build Dataset & Dataloader ----------------------------
  993. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  994. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  995. # ---------------------------- Build Evaluator ----------------------------
  996. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  997. # ---------------------------- Build Grad. Scaler ----------------------------
  998. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  999. # ---------------------------- Build Optimizer ----------------------------
  1000. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  1001. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  1002. # ---------------------------- Build LR Scheduler ----------------------------
  1003. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1004. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1005. if self.args.resume and self.args.resume != 'None':
  1006. self.lr_scheduler.step()
  1007. # ---------------------------- Build Model-EMA ----------------------------
  1008. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1009. print('Build ModelEMA ...')
  1010. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1011. else:
  1012. self.model_ema = None
  1013. def train(self, model):
  1014. for epoch in range(self.start_epoch, self.args.max_epoch):
  1015. if self.args.distributed:
  1016. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1017. # check second stage
  1018. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1019. self.check_second_stage()
  1020. # save model of the last mosaic epoch
  1021. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1022. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1023. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1024. torch.save({'model': model.state_dict(),
  1025. 'mAP': round(self.evaluator.map*100, 1),
  1026. 'optimizer': self.optimizer.state_dict(),
  1027. 'epoch': self.epoch,
  1028. 'args': self.args},
  1029. checkpoint_path)
  1030. # train one epoch
  1031. self.epoch = epoch
  1032. self.train_one_epoch(model)
  1033. # eval one epoch
  1034. if self.heavy_eval:
  1035. model_eval = model.module if self.args.distributed else model
  1036. self.eval(model_eval)
  1037. else:
  1038. model_eval = model.module if self.args.distributed else model
  1039. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1040. self.eval(model_eval)
  1041. if self.args.debug:
  1042. print("For debug mode, we only train 1 epoch")
  1043. break
  1044. def eval(self, model):
  1045. # chech model
  1046. model_eval = model if self.model_ema is None else self.model_ema.ema
  1047. if distributed_utils.is_main_process():
  1048. # check evaluator
  1049. if self.evaluator is None:
  1050. print('No evaluator ... save model and go on training.')
  1051. print('Saving state, epoch: {}'.format(self.epoch))
  1052. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1053. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1054. torch.save({'model': model_eval.state_dict(),
  1055. 'mAP': -1.,
  1056. 'optimizer': self.optimizer.state_dict(),
  1057. 'epoch': self.epoch,
  1058. 'args': self.args},
  1059. checkpoint_path)
  1060. else:
  1061. print('eval ...')
  1062. # set eval mode
  1063. model_eval.eval()
  1064. # evaluate
  1065. with torch.no_grad():
  1066. self.evaluator.evaluate(model_eval)
  1067. # save model
  1068. cur_map = self.evaluator.map
  1069. if cur_map > self.best_map:
  1070. # update best-map
  1071. self.best_map = cur_map
  1072. # save model
  1073. print('Saving state, epoch:', self.epoch)
  1074. weight_name = '{}_best.pth'.format(self.args.model)
  1075. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1076. torch.save({'model': model_eval.state_dict(),
  1077. 'mAP': round(self.best_map*100, 1),
  1078. 'optimizer': self.optimizer.state_dict(),
  1079. 'epoch': self.epoch,
  1080. 'args': self.args},
  1081. checkpoint_path)
  1082. # set train mode.
  1083. model_eval.train()
  1084. if self.args.distributed:
  1085. # wait for all processes to synchronize
  1086. dist.barrier()
  1087. def train_one_epoch(self, model):
  1088. metric_logger = MetricLogger(delimiter=" ")
  1089. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1090. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1091. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1092. epoch_size = len(self.train_loader)
  1093. print_freq = 10
  1094. # basic parameters
  1095. epoch_size = len(self.train_loader)
  1096. img_size = self.args.img_size
  1097. nw = self.lr_schedule_dict['warmup_iters']
  1098. # Train one epoch
  1099. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1100. ni = iter_i + self.epoch * epoch_size
  1101. # Warmup
  1102. if ni <= nw:
  1103. xi = [0, nw] # x interp
  1104. for x in self.optimizer.param_groups:
  1105. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1106. # To device
  1107. images = images.to(self.device, non_blocking=True).float()
  1108. # Multi scale
  1109. if self.args.multi_scale:
  1110. images, targets, img_size = self.rescale_image_targets(
  1111. images, targets, self.model_cfg['out_stride'][-1], self.args.min_box_size, self.model_cfg['multi_scale'])
  1112. else:
  1113. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1114. # Visualize train targets
  1115. if self.args.vis_tgt:
  1116. vis_data(images, targets, normalized_bbox=True,
  1117. pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1118. # Inference
  1119. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1120. outputs = model(images, targets)
  1121. # Compute loss
  1122. loss_dict = self.criterion(*outputs, targets)
  1123. losses = sum(loss_dict.values())
  1124. # Grad Accumulate
  1125. if self.grad_accumulate > 1:
  1126. losses /= self.grad_accumulate
  1127. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1128. # Backward
  1129. self.scaler.scale(losses).backward()
  1130. # Optimize
  1131. if ni % self.grad_accumulate == 0:
  1132. grad_norm = None
  1133. if self.clip_grad > 0:
  1134. # unscale gradients
  1135. self.scaler.unscale_(self.optimizer)
  1136. # clip gradients
  1137. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1138. # optimizer.step
  1139. self.scaler.step(self.optimizer)
  1140. self.scaler.update()
  1141. self.optimizer.zero_grad()
  1142. # ema
  1143. if self.model_ema is not None:
  1144. self.model_ema.update(model)
  1145. # Update log
  1146. metric_logger.update(**loss_dict_reduced)
  1147. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1148. metric_logger.update(grad_norm=grad_norm)
  1149. metric_logger.update(size=img_size)
  1150. if self.args.debug:
  1151. print("For debug mode, we only train 1 iteration")
  1152. break
  1153. # LR Schedule
  1154. if not self.second_stage:
  1155. self.lr_scheduler.step()
  1156. def refine_targets(self, img_size, targets, min_box_size):
  1157. # rescale targets
  1158. for tgt in targets:
  1159. boxes = tgt["boxes"].clone()
  1160. labels = tgt["labels"].clone()
  1161. # refine tgt
  1162. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1163. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1164. keep = (min_tgt_size >= min_box_size)
  1165. # normalize box
  1166. boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
  1167. boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
  1168. tgt["boxes"] = boxes[keep]
  1169. tgt["labels"] = labels[keep]
  1170. return targets
  1171. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1172. """
  1173. Deployed for Multi scale trick.
  1174. """
  1175. if isinstance(stride, int):
  1176. max_stride = stride
  1177. elif isinstance(stride, list):
  1178. max_stride = max(stride)
  1179. # During training phase, the shape of input image is square.
  1180. old_img_size = images.shape[-1]
  1181. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1182. new_img_size = new_img_size // max_stride * max_stride # size
  1183. if new_img_size / old_img_size != 1:
  1184. # interpolate
  1185. images = torch.nn.functional.interpolate(
  1186. input=images,
  1187. size=new_img_size,
  1188. mode='bilinear',
  1189. align_corners=False)
  1190. # rescale targets
  1191. for tgt in targets:
  1192. boxes = tgt["boxes"].clone()
  1193. labels = tgt["labels"].clone()
  1194. boxes = torch.clamp(boxes, 0, old_img_size)
  1195. # rescale box
  1196. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1197. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1198. # refine tgt
  1199. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1200. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1201. keep = (min_tgt_size >= min_box_size)
  1202. # normalize box
  1203. boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
  1204. boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
  1205. tgt["boxes"] = boxes[keep]
  1206. tgt["labels"] = labels[keep]
  1207. return images, targets, new_img_size
  1208. def check_second_stage(self):
  1209. # set second stage
  1210. print('============== Second stage of Training ==============')
  1211. self.second_stage = True
  1212. # close mosaic augmentation
  1213. if self.train_loader.dataset.mosaic_prob > 0.:
  1214. print(' - Close < Mosaic Augmentation > ...')
  1215. self.train_loader.dataset.mosaic_prob = 0.
  1216. self.heavy_eval = True
  1217. # close mixup augmentation
  1218. if self.train_loader.dataset.mixup_prob > 0.:
  1219. print(' - Close < Mixup Augmentation > ...')
  1220. self.train_loader.dataset.mixup_prob = 0.
  1221. self.heavy_eval = True
  1222. # close rotation augmentation
  1223. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1224. print(' - Close < degress of rotation > ...')
  1225. self.trans_cfg['degrees'] = 0.0
  1226. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1227. print(' - Close < shear of rotation >...')
  1228. self.trans_cfg['shear'] = 0.0
  1229. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1230. print(' - Close < perspective of rotation > ...')
  1231. self.trans_cfg['perspective'] = 0.0
  1232. # build a new transform for second stage
  1233. print(' - Rebuild transforms ...')
  1234. self.train_transform, self.trans_cfg = build_transform(
  1235. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['out_stride'][-1], is_train=True)
  1236. self.train_loader.dataset.transform = self.train_transform
  1237. # ----------------------- Det + Seg trainers -----------------------
  1238. ## RTCDet Trainer for Det + Seg
  1239. class RTCTrainerDS(object):
  1240. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1241. # ------------------- basic parameters -------------------
  1242. self.args = args
  1243. self.epoch = 0
  1244. self.best_map = -1.
  1245. self.device = device
  1246. self.criterion = criterion
  1247. self.world_size = world_size
  1248. self.grad_accumulate = args.grad_accumulate
  1249. self.clip_grad = 35
  1250. self.heavy_eval = False
  1251. # weak augmentatino stage
  1252. self.second_stage = False
  1253. self.third_stage = False
  1254. self.second_stage_epoch = args.no_aug_epoch
  1255. self.third_stage_epoch = args.no_aug_epoch // 2
  1256. # path to save model
  1257. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1258. os.makedirs(self.path_to_save, exist_ok=True)
  1259. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1260. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1261. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1262. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1263. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1264. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1265. self.data_cfg = data_cfg
  1266. self.model_cfg = model_cfg
  1267. self.trans_cfg = trans_cfg
  1268. # ---------------------------- Build Transform ----------------------------
  1269. self.train_transform, self.trans_cfg = build_transform(
  1270. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1271. self.val_transform, _ = build_transform(
  1272. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1273. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1274. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1275. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1276. # ---------------------------- Build Evaluator ----------------------------
  1277. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1278. # ---------------------------- Build Grad. Scaler ----------------------------
  1279. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1280. # ---------------------------- Build Optimizer ----------------------------
  1281. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1282. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1283. # ---------------------------- Build LR Scheduler ----------------------------
  1284. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1285. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1286. if self.args.resume and self.args.resume != 'None':
  1287. self.lr_scheduler.step()
  1288. # ---------------------------- Build Model-EMA ----------------------------
  1289. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1290. print('Build ModelEMA ...')
  1291. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1292. else:
  1293. self.model_ema = None
  1294. def train(self, model):
  1295. for epoch in range(self.start_epoch, self.args.max_epoch):
  1296. if self.args.distributed:
  1297. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1298. # check second stage
  1299. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1300. self.check_second_stage()
  1301. # save model of the last mosaic epoch
  1302. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1303. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1304. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1305. torch.save({'model': model.state_dict(),
  1306. 'mAP': round(self.evaluator.map*100, 1),
  1307. 'optimizer': self.optimizer.state_dict(),
  1308. 'epoch': self.epoch,
  1309. 'args': self.args},
  1310. checkpoint_path)
  1311. # check third stage
  1312. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1313. self.check_third_stage()
  1314. # save model of the last mosaic epoch
  1315. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1316. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1317. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1318. torch.save({'model': model.state_dict(),
  1319. 'mAP': round(self.evaluator.map*100, 1),
  1320. 'optimizer': self.optimizer.state_dict(),
  1321. 'epoch': self.epoch,
  1322. 'args': self.args},
  1323. checkpoint_path)
  1324. # train one epoch
  1325. self.epoch = epoch
  1326. self.train_one_epoch(model)
  1327. # eval one epoch
  1328. if self.heavy_eval:
  1329. model_eval = model.module if self.args.distributed else model
  1330. self.eval(model_eval)
  1331. else:
  1332. model_eval = model.module if self.args.distributed else model
  1333. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1334. self.eval(model_eval)
  1335. if self.args.debug:
  1336. print("For debug mode, we only train 1 epoch")
  1337. break
  1338. def eval(self, model):
  1339. # chech model
  1340. model_eval = model if self.model_ema is None else self.model_ema.ema
  1341. if distributed_utils.is_main_process():
  1342. # check evaluator
  1343. if self.evaluator is None:
  1344. print('No evaluator ... save model and go on training.')
  1345. print('Saving state, epoch: {}'.format(self.epoch))
  1346. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1347. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1348. torch.save({'model': model_eval.state_dict(),
  1349. 'mAP': -1.,
  1350. 'optimizer': self.optimizer.state_dict(),
  1351. 'epoch': self.epoch,
  1352. 'args': self.args},
  1353. checkpoint_path)
  1354. else:
  1355. print('eval ...')
  1356. # set eval mode
  1357. model_eval.trainable = False
  1358. model_eval.eval()
  1359. # evaluate
  1360. with torch.no_grad():
  1361. self.evaluator.evaluate(model_eval)
  1362. # save model
  1363. cur_map = self.evaluator.map
  1364. if cur_map > self.best_map:
  1365. # update best-map
  1366. self.best_map = cur_map
  1367. # save model
  1368. print('Saving state, epoch:', self.epoch)
  1369. weight_name = '{}_best.pth'.format(self.args.model)
  1370. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1371. torch.save({'model': model_eval.state_dict(),
  1372. 'mAP': round(self.best_map*100, 1),
  1373. 'optimizer': self.optimizer.state_dict(),
  1374. 'epoch': self.epoch,
  1375. 'args': self.args},
  1376. checkpoint_path)
  1377. # set train mode.
  1378. model_eval.trainable = True
  1379. model_eval.train()
  1380. if self.args.distributed:
  1381. # wait for all processes to synchronize
  1382. dist.barrier()
  1383. def train_one_epoch(self, model):
  1384. metric_logger = MetricLogger(delimiter=" ")
  1385. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1386. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1387. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1388. epoch_size = len(self.train_loader)
  1389. print_freq = 10
  1390. # basic parameters
  1391. epoch_size = len(self.train_loader)
  1392. img_size = self.args.img_size
  1393. nw = epoch_size * self.args.wp_epoch
  1394. # Train one epoch
  1395. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1396. ni = iter_i + self.epoch * epoch_size
  1397. # Warmup
  1398. if ni <= nw:
  1399. xi = [0, nw] # x interp
  1400. for j, x in enumerate(self.optimizer.param_groups):
  1401. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1402. x['lr'] = np.interp(
  1403. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1404. if 'momentum' in x:
  1405. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1406. # To device
  1407. images = images.to(self.device, non_blocking=True).float() / 255.
  1408. # Multi scale
  1409. if self.args.multi_scale:
  1410. images, targets, img_size = self.rescale_image_targets(
  1411. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1412. else:
  1413. targets = self.refine_targets(targets, self.args.min_box_size)
  1414. # Visualize train targets
  1415. if self.args.vis_tgt:
  1416. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1417. # Inference
  1418. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1419. outputs = model(images)
  1420. # Compute loss
  1421. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
  1422. det_loss_dict = loss_dict['det_loss_dict']
  1423. seg_loss_dict = loss_dict['seg_loss_dict']
  1424. # TODO: finish the backward + optimize
  1425. # # Update log
  1426. # metric_logger.update(**loss_dict_reduced)
  1427. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1428. # metric_logger.update(grad_norm=grad_norm)
  1429. # metric_logger.update(size=img_size)
  1430. if self.args.debug:
  1431. print("For debug mode, we only train 1 iteration")
  1432. break
  1433. # LR Schedule
  1434. if not self.second_stage:
  1435. self.lr_scheduler.step()
  1436. # Gather the stats from all processes
  1437. metric_logger.synchronize_between_processes()
  1438. print("Averaged stats:", metric_logger)
  1439. def refine_targets(self, targets, min_box_size):
  1440. # rescale targets
  1441. for tgt in targets:
  1442. boxes = tgt["boxes"].clone()
  1443. labels = tgt["labels"].clone()
  1444. # refine tgt
  1445. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1446. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1447. keep = (min_tgt_size >= min_box_size)
  1448. tgt["boxes"] = boxes[keep]
  1449. tgt["labels"] = labels[keep]
  1450. return targets
  1451. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1452. """
  1453. Deployed for Multi scale trick.
  1454. """
  1455. if isinstance(stride, int):
  1456. max_stride = stride
  1457. elif isinstance(stride, list):
  1458. max_stride = max(stride)
  1459. # During training phase, the shape of input image is square.
  1460. old_img_size = images.shape[-1]
  1461. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1462. new_img_size = new_img_size // max_stride * max_stride # size
  1463. if new_img_size / old_img_size != 1:
  1464. # interpolate
  1465. images = torch.nn.functional.interpolate(
  1466. input=images,
  1467. size=new_img_size,
  1468. mode='bilinear',
  1469. align_corners=False)
  1470. # rescale targets
  1471. for tgt in targets:
  1472. boxes = tgt["boxes"].clone()
  1473. labels = tgt["labels"].clone()
  1474. boxes = torch.clamp(boxes, 0, old_img_size)
  1475. # rescale box
  1476. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1477. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1478. # refine tgt
  1479. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1480. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1481. keep = (min_tgt_size >= min_box_size)
  1482. tgt["boxes"] = boxes[keep]
  1483. tgt["labels"] = labels[keep]
  1484. return images, targets, new_img_size
  1485. def check_second_stage(self):
  1486. # set second stage
  1487. print('============== Second stage of Training ==============')
  1488. self.second_stage = True
  1489. # close mosaic augmentation
  1490. if self.train_loader.dataset.mosaic_prob > 0.:
  1491. print(' - Close < Mosaic Augmentation > ...')
  1492. self.train_loader.dataset.mosaic_prob = 0.
  1493. self.heavy_eval = True
  1494. # close mixup augmentation
  1495. if self.train_loader.dataset.mixup_prob > 0.:
  1496. print(' - Close < Mixup Augmentation > ...')
  1497. self.train_loader.dataset.mixup_prob = 0.
  1498. self.heavy_eval = True
  1499. # close rotation augmentation
  1500. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1501. print(' - Close < degress of rotation > ...')
  1502. self.trans_cfg['degrees'] = 0.0
  1503. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1504. print(' - Close < shear of rotation >...')
  1505. self.trans_cfg['shear'] = 0.0
  1506. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1507. print(' - Close < perspective of rotation > ...')
  1508. self.trans_cfg['perspective'] = 0.0
  1509. # build a new transform for second stage
  1510. print(' - Rebuild transforms ...')
  1511. self.train_transform, self.trans_cfg = build_transform(
  1512. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1513. self.train_loader.dataset.transform = self.train_transform
  1514. def check_third_stage(self):
  1515. # set third stage
  1516. print('============== Third stage of Training ==============')
  1517. self.third_stage = True
  1518. # close random affine
  1519. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1520. print(' - Close < translate of affine > ...')
  1521. self.trans_cfg['translate'] = 0.0
  1522. if 'scale' in self.trans_cfg.keys():
  1523. print(' - Close < scale of affine >...')
  1524. self.trans_cfg['scale'] = [1.0, 1.0]
  1525. # build a new transform for second stage
  1526. print(' - Rebuild transforms ...')
  1527. self.train_transform, self.trans_cfg = build_transform(
  1528. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1529. self.train_loader.dataset.transform = self.train_transform
  1530. # ----------------------- Det + Seg + Pos trainers -----------------------
  1531. ## RTCDet Trainer for Det + Seg + HumanPose
  1532. class RTCTrainerDSP(object):
  1533. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1534. # ------------------- basic parameters -------------------
  1535. self.args = args
  1536. self.epoch = 0
  1537. self.best_map = -1.
  1538. self.device = device
  1539. self.criterion = criterion
  1540. self.world_size = world_size
  1541. self.grad_accumulate = args.grad_accumulate
  1542. self.clip_grad = 35
  1543. self.heavy_eval = False
  1544. # weak augmentatino stage
  1545. self.second_stage = False
  1546. self.third_stage = False
  1547. self.second_stage_epoch = args.no_aug_epoch
  1548. self.third_stage_epoch = args.no_aug_epoch // 2
  1549. # path to save model
  1550. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1551. os.makedirs(self.path_to_save, exist_ok=True)
  1552. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1553. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1554. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1555. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1556. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1557. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1558. self.data_cfg = data_cfg
  1559. self.model_cfg = model_cfg
  1560. self.trans_cfg = trans_cfg
  1561. # ---------------------------- Build Transform ----------------------------
  1562. self.train_transform, self.trans_cfg = build_transform(
  1563. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1564. self.val_transform, _ = build_transform(
  1565. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1566. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1567. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1568. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1569. # ---------------------------- Build Evaluator ----------------------------
  1570. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1571. # ---------------------------- Build Grad. Scaler ----------------------------
  1572. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1573. # ---------------------------- Build Optimizer ----------------------------
  1574. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1575. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1576. # ---------------------------- Build LR Scheduler ----------------------------
  1577. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1578. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1579. if self.args.resume and self.args.resume != 'None':
  1580. self.lr_scheduler.step()
  1581. # ---------------------------- Build Model-EMA ----------------------------
  1582. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1583. print('Build ModelEMA ...')
  1584. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1585. else:
  1586. self.model_ema = None
  1587. def train(self, model):
  1588. for epoch in range(self.start_epoch, self.args.max_epoch):
  1589. if self.args.distributed:
  1590. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1591. # check second stage
  1592. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1593. self.check_second_stage()
  1594. # save model of the last mosaic epoch
  1595. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1596. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1597. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1598. torch.save({'model': model.state_dict(),
  1599. 'mAP': round(self.evaluator.map*100, 1),
  1600. 'optimizer': self.optimizer.state_dict(),
  1601. 'epoch': self.epoch,
  1602. 'args': self.args},
  1603. checkpoint_path)
  1604. # check third stage
  1605. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1606. self.check_third_stage()
  1607. # save model of the last mosaic epoch
  1608. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1609. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1610. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1611. torch.save({'model': model.state_dict(),
  1612. 'mAP': round(self.evaluator.map*100, 1),
  1613. 'optimizer': self.optimizer.state_dict(),
  1614. 'epoch': self.epoch,
  1615. 'args': self.args},
  1616. checkpoint_path)
  1617. # train one epoch
  1618. self.epoch = epoch
  1619. self.train_one_epoch(model)
  1620. # eval one epoch
  1621. if self.heavy_eval:
  1622. model_eval = model.module if self.args.distributed else model
  1623. self.eval(model_eval)
  1624. else:
  1625. model_eval = model.module if self.args.distributed else model
  1626. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1627. self.eval(model_eval)
  1628. if self.args.debug:
  1629. print("For debug mode, we only train 1 epoch")
  1630. break
  1631. def eval(self, model):
  1632. # chech model
  1633. model_eval = model if self.model_ema is None else self.model_ema.ema
  1634. if distributed_utils.is_main_process():
  1635. # check evaluator
  1636. if self.evaluator is None:
  1637. print('No evaluator ... save model and go on training.')
  1638. print('Saving state, epoch: {}'.format(self.epoch))
  1639. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1640. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1641. torch.save({'model': model_eval.state_dict(),
  1642. 'mAP': -1.,
  1643. 'optimizer': self.optimizer.state_dict(),
  1644. 'epoch': self.epoch,
  1645. 'args': self.args},
  1646. checkpoint_path)
  1647. else:
  1648. print('eval ...')
  1649. # set eval mode
  1650. model_eval.trainable = False
  1651. model_eval.eval()
  1652. # evaluate
  1653. with torch.no_grad():
  1654. self.evaluator.evaluate(model_eval)
  1655. # save model
  1656. cur_map = self.evaluator.map
  1657. if cur_map > self.best_map:
  1658. # update best-map
  1659. self.best_map = cur_map
  1660. # save model
  1661. print('Saving state, epoch:', self.epoch)
  1662. weight_name = '{}_best.pth'.format(self.args.model)
  1663. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1664. torch.save({'model': model_eval.state_dict(),
  1665. 'mAP': round(self.best_map*100, 1),
  1666. 'optimizer': self.optimizer.state_dict(),
  1667. 'epoch': self.epoch,
  1668. 'args': self.args},
  1669. checkpoint_path)
  1670. # set train mode.
  1671. model_eval.trainable = True
  1672. model_eval.train()
  1673. if self.args.distributed:
  1674. # wait for all processes to synchronize
  1675. dist.barrier()
  1676. def train_one_epoch(self, model):
  1677. metric_logger = MetricLogger(delimiter=" ")
  1678. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1679. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1680. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1681. epoch_size = len(self.train_loader)
  1682. print_freq = 10
  1683. # basic parameters
  1684. epoch_size = len(self.train_loader)
  1685. img_size = self.args.img_size
  1686. nw = epoch_size * self.args.wp_epoch
  1687. # Train one epoch
  1688. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1689. ni = iter_i + self.epoch * epoch_size
  1690. # Warmup
  1691. if ni <= nw:
  1692. xi = [0, nw] # x interp
  1693. for j, x in enumerate(self.optimizer.param_groups):
  1694. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1695. x['lr'] = np.interp(
  1696. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1697. if 'momentum' in x:
  1698. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1699. # To device
  1700. images = images.to(self.device, non_blocking=True).float() / 255.
  1701. # Multi scale
  1702. if self.args.multi_scale:
  1703. images, targets, img_size = self.rescale_image_targets(
  1704. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1705. else:
  1706. targets = self.refine_targets(targets, self.args.min_box_size)
  1707. # Visualize train targets
  1708. if self.args.vis_tgt:
  1709. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1710. # Inference
  1711. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1712. outputs = model(images)
  1713. # Compute loss
  1714. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
  1715. det_loss_dict = loss_dict['det_loss_dict']
  1716. seg_loss_dict = loss_dict['seg_loss_dict']
  1717. pos_loss_dict = loss_dict['pos_loss_dict']
  1718. # TODO: finish the backward + optimize
  1719. # # Update log
  1720. # metric_logger.update(**loss_dict_reduced)
  1721. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1722. # metric_logger.update(grad_norm=grad_norm)
  1723. # metric_logger.update(size=img_size)
  1724. if self.args.debug:
  1725. print("For debug mode, we only train 1 iteration")
  1726. break
  1727. # LR Schedule
  1728. if not self.second_stage:
  1729. self.lr_scheduler.step()
  1730. # Gather the stats from all processes
  1731. metric_logger.synchronize_between_processes()
  1732. print("Averaged stats:", metric_logger)
  1733. def refine_targets(self, targets, min_box_size):
  1734. # rescale targets
  1735. for tgt in targets:
  1736. boxes = tgt["boxes"].clone()
  1737. labels = tgt["labels"].clone()
  1738. # refine tgt
  1739. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1740. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1741. keep = (min_tgt_size >= min_box_size)
  1742. tgt["boxes"] = boxes[keep]
  1743. tgt["labels"] = labels[keep]
  1744. return targets
  1745. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1746. """
  1747. Deployed for Multi scale trick.
  1748. """
  1749. if isinstance(stride, int):
  1750. max_stride = stride
  1751. elif isinstance(stride, list):
  1752. max_stride = max(stride)
  1753. # During training phase, the shape of input image is square.
  1754. old_img_size = images.shape[-1]
  1755. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1756. new_img_size = new_img_size // max_stride * max_stride # size
  1757. if new_img_size / old_img_size != 1:
  1758. # interpolate
  1759. images = torch.nn.functional.interpolate(
  1760. input=images,
  1761. size=new_img_size,
  1762. mode='bilinear',
  1763. align_corners=False)
  1764. # rescale targets
  1765. for tgt in targets:
  1766. boxes = tgt["boxes"].clone()
  1767. labels = tgt["labels"].clone()
  1768. boxes = torch.clamp(boxes, 0, old_img_size)
  1769. # rescale box
  1770. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1771. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1772. # refine tgt
  1773. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1774. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1775. keep = (min_tgt_size >= min_box_size)
  1776. tgt["boxes"] = boxes[keep]
  1777. tgt["labels"] = labels[keep]
  1778. return images, targets, new_img_size
  1779. def check_second_stage(self):
  1780. # set second stage
  1781. print('============== Second stage of Training ==============')
  1782. self.second_stage = True
  1783. # close mosaic augmentation
  1784. if self.train_loader.dataset.mosaic_prob > 0.:
  1785. print(' - Close < Mosaic Augmentation > ...')
  1786. self.train_loader.dataset.mosaic_prob = 0.
  1787. self.heavy_eval = True
  1788. # close mixup augmentation
  1789. if self.train_loader.dataset.mixup_prob > 0.:
  1790. print(' - Close < Mixup Augmentation > ...')
  1791. self.train_loader.dataset.mixup_prob = 0.
  1792. self.heavy_eval = True
  1793. # close rotation augmentation
  1794. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1795. print(' - Close < degress of rotation > ...')
  1796. self.trans_cfg['degrees'] = 0.0
  1797. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1798. print(' - Close < shear of rotation >...')
  1799. self.trans_cfg['shear'] = 0.0
  1800. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1801. print(' - Close < perspective of rotation > ...')
  1802. self.trans_cfg['perspective'] = 0.0
  1803. # build a new transform for second stage
  1804. print(' - Rebuild transforms ...')
  1805. self.train_transform, self.trans_cfg = build_transform(
  1806. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1807. self.train_loader.dataset.transform = self.train_transform
  1808. def check_third_stage(self):
  1809. # set third stage
  1810. print('============== Third stage of Training ==============')
  1811. self.third_stage = True
  1812. # close random affine
  1813. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1814. print(' - Close < translate of affine > ...')
  1815. self.trans_cfg['translate'] = 0.0
  1816. if 'scale' in self.trans_cfg.keys():
  1817. print(' - Close < scale of affine >...')
  1818. self.trans_cfg['scale'] = [1.0, 1.0]
  1819. # build a new transform for second stage
  1820. print(' - Rebuild transforms ...')
  1821. self.train_transform, self.trans_cfg = build_transform(
  1822. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1823. self.train_loader.dataset.transform = self.train_transform
  1824. # Build Trainer
  1825. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1826. # ----------------------- Det trainers -----------------------
  1827. if model_cfg['trainer_type'] == 'yolov8':
  1828. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1829. elif model_cfg['trainer_type'] == 'yolox':
  1830. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1831. elif model_cfg['trainer_type'] == 'rtcdet':
  1832. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1833. elif model_cfg['trainer_type'] == 'rtdetr':
  1834. return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1835. # ----------------------- Det + Seg trainers -----------------------
  1836. elif model_cfg['trainer_type'] == 'rtcdet_ds':
  1837. return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1838. # ----------------------- Det + Seg + Pos trainers -----------------------
  1839. elif model_cfg['trainer_type'] == 'rtcdet_dsp':
  1840. return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1841. else:
  1842. raise NotImplementedError(model_cfg['trainer_type'])