test.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. import argparse
  2. import cv2
  3. import os
  4. import time
  5. import numpy as np
  6. from copy import deepcopy
  7. import torch
  8. # load transform
  9. from dataset.build import build_dataset, build_transform
  10. # load some utils
  11. from utils.misc import load_weight, compute_flops
  12. from utils.box_ops import rescale_bboxes
  13. from config import build_dataset_config, build_model_config, build_trans_config
  14. from models.detectors import build_model
  15. def parse_args():
  16. parser = argparse.ArgumentParser(description='YOLO-Tutorial')
  17. # basic
  18. parser.add_argument('-size', '--img_size', default=640, type=int,
  19. help='the max size of input image')
  20. parser.add_argument('--show', action='store_true', default=False,
  21. help='show the visulization results.')
  22. parser.add_argument('--save', action='store_true', default=False,
  23. help='save the visulization results.')
  24. parser.add_argument('--cuda', action='store_true', default=False,
  25. help='use cuda.')
  26. parser.add_argument('--save_folder', default='det_results/', type=str,
  27. help='Dir to save results')
  28. parser.add_argument('-vt', '--visual_threshold', default=0.4, type=float,
  29. help='Final confidence threshold')
  30. parser.add_argument('-ws', '--window_scale', default=1.0, type=float,
  31. help='resize window of cv2 for visualization.')
  32. # model
  33. parser.add_argument('-m', '--model', default='yolov1', type=str,
  34. help='build yolo')
  35. parser.add_argument('--weight', default=None,
  36. type=str, help='Trained state_dict file path to open')
  37. parser.add_argument('-ct', '--conf_thresh', default=0.1, type=float,
  38. help='confidence threshold')
  39. parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
  40. help='NMS threshold')
  41. parser.add_argument('--topk', default=100, type=int,
  42. help='topk candidates for testing')
  43. parser.add_argument("--no_decode", action="store_true", default=False,
  44. help="not decode in inference or yes")
  45. parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
  46. help='fuse Conv & BN')
  47. # dataset
  48. parser.add_argument('--root', default='/mnt/share/ssd2/dataset',
  49. help='data root')
  50. parser.add_argument('-d', '--dataset', default='coco',
  51. help='coco, voc.')
  52. parser.add_argument('--min_box_size', default=8.0, type=float,
  53. help='min size of target bounding box.')
  54. parser.add_argument('--mosaic', default=None, type=float,
  55. help='mosaic augmentation.')
  56. parser.add_argument('--mixup', default=None, type=float,
  57. help='mixup augmentation.')
  58. return parser.parse_args()
  59. def plot_bbox_labels(img, bbox, label=None, cls_color=None, text_scale=0.4):
  60. x1, y1, x2, y2 = bbox
  61. x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
  62. t_size = cv2.getTextSize(label, 0, fontScale=1, thickness=2)[0]
  63. # plot bbox
  64. cv2.rectangle(img, (x1, y1), (x2, y2), cls_color, 2)
  65. if label is not None:
  66. # plot title bbox
  67. cv2.rectangle(img, (x1, y1-t_size[1]), (int(x1 + t_size[0] * text_scale), y1), cls_color, -1)
  68. # put the test on the title bbox
  69. cv2.putText(img, label, (int(x1), int(y1 - 5)), 0, text_scale, (0, 0, 0), 1, lineType=cv2.LINE_AA)
  70. return img
  71. def visualize(img,
  72. bboxes,
  73. scores,
  74. labels,
  75. vis_thresh,
  76. class_colors,
  77. class_names,
  78. class_indexs=None,
  79. dataset_name='voc'):
  80. ts = 0.4
  81. for i, bbox in enumerate(bboxes):
  82. if scores[i] > vis_thresh:
  83. cls_id = int(labels[i])
  84. if dataset_name == 'coco':
  85. cls_color = class_colors[cls_id]
  86. cls_id = class_indexs[cls_id]
  87. else:
  88. cls_color = class_colors[cls_id]
  89. mess = '%s: %.2f' % (class_names[cls_id], scores[i])
  90. img = plot_bbox_labels(img, bbox, mess, cls_color, text_scale=ts)
  91. return img
  92. @torch.no_grad()
  93. def test(args,
  94. model,
  95. device,
  96. dataset,
  97. transform=None,
  98. class_colors=None,
  99. class_names=None,
  100. class_indexs=None):
  101. num_images = len(dataset)
  102. save_path = os.path.join('det_results/', args.dataset, args.model)
  103. os.makedirs(save_path, exist_ok=True)
  104. for index in range(num_images):
  105. print('Testing image {:d}/{:d}....'.format(index+1, num_images))
  106. image, _ = dataset.pull_image(index)
  107. orig_h, orig_w, _ = image.shape
  108. # prepare
  109. x, _, deltas = transform(image)
  110. x = x.unsqueeze(0).to(device) / 255.
  111. t0 = time.time()
  112. # inference
  113. bboxes, scores, labels = model(x)
  114. print(bboxes, scores, labels)
  115. print("detection time used ", time.time() - t0, "s")
  116. # rescale bboxes
  117. origin_img_size = [orig_h, orig_w]
  118. cur_img_size = [*x.shape[-2:]]
  119. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  120. # vis detection
  121. img_processed = visualize(
  122. img=image,
  123. bboxes=bboxes,
  124. scores=scores,
  125. labels=labels,
  126. vis_thresh=args.visual_threshold,
  127. class_colors=class_colors,
  128. class_names=class_names,
  129. class_indexs=class_indexs,
  130. dataset_name=args.dataset)
  131. if args.show:
  132. h, w = img_processed.shape[:2]
  133. sw, sh = int(w*args.window_scale), int(h*args.window_scale)
  134. cv2.namedWindow('detection', 0)
  135. cv2.resizeWindow('detection', sw, sh)
  136. cv2.imshow('detection', img_processed)
  137. cv2.waitKey(0)
  138. if args.save:
  139. # save result
  140. cv2.imwrite(os.path.join(save_path, str(index).zfill(6) +'.jpg'), img_processed)
  141. if __name__ == '__main__':
  142. args = parse_args()
  143. # cuda
  144. if args.cuda:
  145. print('use cuda')
  146. device = torch.device("cuda")
  147. else:
  148. device = torch.device("cpu")
  149. # Dataset & Model Config
  150. data_cfg = build_dataset_config(args)
  151. model_cfg = build_model_config(args)
  152. trans_cfg = build_trans_config(model_cfg['trans_type'])
  153. # Transform
  154. val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
  155. # Dataset
  156. dataset, dataset_info = build_dataset(args, data_cfg, trans_cfg, val_transform, is_train=False)
  157. num_classes = dataset_info['num_classes']
  158. np.random.seed(0)
  159. class_colors = [(np.random.randint(255),
  160. np.random.randint(255),
  161. np.random.randint(255)) for _ in range(num_classes)]
  162. # build model
  163. model = build_model(args, model_cfg, device, num_classes, False)
  164. # load trained weight
  165. model = load_weight(model, args.weight, args.fuse_conv_bn)
  166. model.to(device).eval()
  167. # compute FLOPs and Params
  168. model_copy = deepcopy(model)
  169. model_copy.trainable = False
  170. model_copy.eval()
  171. compute_flops(
  172. model=model_copy,
  173. img_size=args.img_size,
  174. device=device)
  175. del model_copy
  176. print("================= DETECT =================")
  177. # run
  178. test(args=args,
  179. model=model,
  180. device=device,
  181. dataset=dataset,
  182. transform=val_transform,
  183. class_colors=class_colors,
  184. class_names=dataset_info['class_names'],
  185. class_indexs=dataset_info['class_indexs'],
  186. )