loss.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import SimOTA
  6. # ----------------------- Criterion for training -----------------------
  7. class Criterion(object):
  8. def __init__(self, args, cfg, device, num_classes=80):
  9. self.cfg = cfg
  10. self.args = args
  11. self.device = device
  12. self.num_classes = num_classes
  13. self.max_epoch = args.max_epoch
  14. self.no_aug_epoch = args.no_aug_epoch
  15. # ---------------- Loss weight ----------------
  16. self.loss_box_aux = cfg['loss_box_aux']
  17. self.loss_cls_weight = cfg['loss_cls_weight']
  18. self.loss_box_weight = cfg['loss_box_weight']
  19. self.loss_dfl_weight = cfg['loss_dfl_weight']
  20. # ---------------- Matcher ----------------
  21. ## Aligned SimOTA assigner
  22. self.matcher_hpy = cfg['matcher_hpy']
  23. self.matcher = SimOTA(num_classes = num_classes,
  24. center_sampling_radius = self.matcher_hpy['center_sampling_radius'],
  25. topk_candidate = self.matcher_hpy['topk_candidate'])
  26. # ----------------- Loss functions -----------------
  27. def loss_classes(self, pred_cls, gt_score):
  28. # compute bce loss
  29. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  30. return loss_cls
  31. def loss_classes_qfl(self, pred_cls, target, beta=2.0):
  32. # Quality FocalLoss
  33. """
  34. pred_cls: (torch.Tensor): [N, C]。
  35. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N,)
  36. """
  37. label, score = target
  38. pred_sigmoid = pred_cls.sigmoid()
  39. scale_factor = pred_sigmoid
  40. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  41. ce_loss = F.binary_cross_entropy_with_logits(
  42. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  43. bg_class_ind = pred_cls.shape[-1]
  44. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  45. pos_label = label[pos].long()
  46. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  47. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  48. pred_cls[pos, pos_label], score[pos],
  49. reduction='none') * scale_factor.abs().pow(beta)
  50. return ce_loss
  51. def loss_bboxes(self, pred_box, gt_box):
  52. # regression loss
  53. ious = get_ious(pred_box, gt_box, 'xyxy', 'giou')
  54. loss_box = 1.0 - ious
  55. return loss_box
  56. def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
  57. # rescale coords by stride
  58. gt_box_s = gt_box / stride
  59. anchor_s = anchor / stride
  60. # compute deltas
  61. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.cfg['reg_max'] - 1)
  62. gt_left = gt_ltrb_s.to(torch.long)
  63. gt_right = gt_left + 1
  64. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  65. weight_right = 1 - weight_left
  66. # loss left
  67. loss_left = F.cross_entropy(
  68. pred_reg.view(-1, self.cfg['reg_max']),
  69. gt_left.view(-1),
  70. reduction='none').view(gt_left.shape) * weight_left
  71. # loss right
  72. loss_right = F.cross_entropy(
  73. pred_reg.view(-1, self.cfg['reg_max']),
  74. gt_right.view(-1),
  75. reduction='none').view(gt_left.shape) * weight_right
  76. loss_dfl = (loss_left + loss_right).mean(-1)
  77. if bbox_weight is not None:
  78. loss_dfl *= bbox_weight
  79. return loss_dfl
  80. def loss_bboxes_aux(self, pred_delta, gt_box, anchors, stride_tensors):
  81. gt_delta_tl = (anchors - gt_box[..., :2]) / stride_tensors
  82. gt_delta_rb = (gt_box[..., 2:] - anchors) / stride_tensors
  83. gt_delta = torch.cat([gt_delta_tl, gt_delta_rb], dim=1)
  84. loss_box_aux = F.l1_loss(pred_delta, gt_delta, reduction='none')
  85. return loss_box_aux
  86. # ----------------- Main process -----------------
  87. def compute_loss1(self, outputs, targets, epoch=0):
  88. bs = outputs['pred_cls'][0].shape[0]
  89. device = outputs['pred_cls'][0].device
  90. fpn_strides = outputs['strides']
  91. anchors = outputs['anchors']
  92. num_anchors = sum([ab.shape[0] for ab in anchors])
  93. # preds: [B, M, C]
  94. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  95. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  96. box_preds = torch.cat(outputs['pred_box'], dim=1)
  97. # --------------- label assignment ---------------
  98. cls_targets = []
  99. box_targets = []
  100. fg_masks = []
  101. for batch_idx in range(bs):
  102. tgt_labels = targets[batch_idx]["labels"].to(device)
  103. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  104. # check target
  105. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  106. # There is no valid gt
  107. cls_target = cls_preds.new_zeros((num_anchors, self.num_classes))
  108. box_target = cls_preds.new_zeros((0, 4))
  109. fg_mask = cls_preds.new_zeros(num_anchors).bool()
  110. else:
  111. (
  112. fg_mask,
  113. assigned_labels,
  114. assigned_ious,
  115. assigned_indexs
  116. ) = self.matcher(
  117. fpn_strides = fpn_strides,
  118. anchors = anchors,
  119. pred_cls = cls_preds[batch_idx],
  120. pred_box = box_preds[batch_idx],
  121. tgt_labels = tgt_labels,
  122. tgt_bboxes = tgt_bboxes
  123. )
  124. # prepare cls targets
  125. assigned_labels = F.one_hot(assigned_labels.long(), self.num_classes)
  126. assigned_labels = assigned_labels * assigned_ious.unsqueeze(-1)
  127. cls_target = assigned_labels.new_zeros((num_anchors, self.num_classes))
  128. cls_target[fg_mask] = assigned_labels
  129. # prepare box targets
  130. box_target = tgt_bboxes[assigned_indexs]
  131. cls_targets.append(cls_target)
  132. box_targets.append(box_target)
  133. fg_masks.append(fg_mask)
  134. cls_targets = torch.cat(cls_targets, 0)
  135. box_targets = torch.cat(box_targets, 0)
  136. fg_masks = torch.cat(fg_masks, 0)
  137. num_fgs = fg_masks.sum()
  138. # average loss normalizer across all the GPUs
  139. if is_dist_avail_and_initialized():
  140. torch.distributed.all_reduce(num_fgs)
  141. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  142. # ------------------ Classification loss ------------------
  143. cls_preds = cls_preds.view(-1, self.num_classes)
  144. loss_cls = self.loss_classes(cls_preds, cls_targets)
  145. loss_cls = loss_cls.sum() / num_fgs
  146. # ------------------ Regression loss ------------------
  147. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  148. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  149. loss_box = loss_box.sum() / num_fgs
  150. # ------------------ Distribution focal loss ------------------
  151. ## process anchors
  152. anchors = torch.cat(anchors, dim=0)
  153. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  154. ## process stride tensors
  155. strides = torch.cat(outputs['stride_tensor'], dim=0)
  156. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  157. ## fg preds
  158. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  159. anchors_pos = anchors[fg_masks]
  160. strides_pos = strides[fg_masks]
  161. ## compute dfl
  162. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
  163. loss_dfl = loss_dfl.sum() / num_fgs
  164. # total loss
  165. losses = self.loss_cls_weight * loss_cls + \
  166. self.loss_box_weight * loss_box + \
  167. self.loss_dfl_weight * loss_dfl
  168. loss_dict = dict(
  169. loss_cls = loss_cls,
  170. loss_box = loss_box,
  171. loss_dfl = loss_dfl,
  172. losses = losses
  173. )
  174. # ------------------ Aux regression loss ------------------
  175. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  176. ## delta_preds
  177. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  178. delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
  179. ## aux loss
  180. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets, anchors_pos, strides_pos)
  181. loss_box_aux = loss_box_aux.sum() / num_fgs
  182. losses += loss_box_aux
  183. loss_dict['loss_box_aux'] = loss_box_aux
  184. return loss_dict
  185. def compute_loss2(self, outputs, targets, epoch=0):
  186. bs = outputs['pred_cls'][0].shape[0]
  187. device = outputs['pred_cls'][0].device
  188. fpn_strides = outputs['strides']
  189. anchors = outputs['anchors']
  190. num_anchors = sum([ab.shape[0] for ab in anchors])
  191. # preds: [B, M, C]
  192. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  193. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  194. box_preds = torch.cat(outputs['pred_box'], dim=1)
  195. # --------------- label assignment ---------------
  196. cls_targets = []
  197. box_targets = []
  198. iou_targets = []
  199. fg_masks = []
  200. for batch_idx in range(bs):
  201. tgt_labels = targets[batch_idx]["labels"].to(device)
  202. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  203. # check target
  204. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  205. # There is no valid gt
  206. cls_target = cls_preds.new_full([num_anchors], self.num_classes, dtype=torch.long)
  207. iou_target = cls_preds.new_zeros([num_anchors])
  208. box_target = cls_preds.new_zeros((0, 4))
  209. fg_mask = cls_preds.new_zeros(num_anchors).bool()
  210. else:
  211. (
  212. fg_mask,
  213. assigned_labels,
  214. assigned_ious,
  215. assigned_indexs
  216. ) = self.matcher(
  217. fpn_strides = fpn_strides,
  218. anchors = anchors,
  219. pred_cls = cls_preds[batch_idx],
  220. pred_box = box_preds[batch_idx],
  221. tgt_labels = tgt_labels,
  222. tgt_bboxes = tgt_bboxes
  223. )
  224. # prepare cls targets
  225. cls_target = assigned_labels.new_full([num_anchors], self.num_classes, dtype=torch.long)
  226. cls_target[fg_mask] = assigned_labels
  227. iou_target = assigned_ious.new_zeros([num_anchors])
  228. iou_target[fg_mask] = assigned_ious
  229. # prepare box targets
  230. box_target = tgt_bboxes[assigned_indexs]
  231. cls_targets.append(cls_target)
  232. box_targets.append(box_target)
  233. iou_targets.append(iou_target)
  234. fg_masks.append(fg_mask)
  235. cls_targets = torch.cat(cls_targets, 0) # [M,]
  236. box_targets = torch.cat(box_targets, 0) # [M, 4]
  237. iou_targets = torch.cat(iou_targets, 0) # [M,]
  238. fg_masks = torch.cat(fg_masks, 0)
  239. num_fgs = fg_masks.sum()
  240. # average loss normalizer across all the GPUs
  241. if is_dist_avail_and_initialized():
  242. torch.distributed.all_reduce(num_fgs)
  243. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  244. # ------------------ Classification loss ------------------
  245. cls_preds = cls_preds.view(-1, self.num_classes)
  246. loss_cls = self.loss_classes_qfl(cls_preds, (cls_targets, iou_targets))
  247. loss_cls = loss_cls.sum() / num_fgs
  248. # ------------------ Regression loss ------------------
  249. loss_box = self.loss_bboxes(box_preds.view(-1, 4)[fg_masks], box_targets)
  250. loss_box = loss_box.sum() / num_fgs
  251. # ------------------ Distribution focal loss ------------------
  252. ## process anchors
  253. anchors = torch.cat(anchors, dim=0)
  254. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  255. ## process stride tensors
  256. strides = torch.cat(outputs['stride_tensor'], dim=0)
  257. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  258. ## fg preds
  259. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  260. anchors_pos = anchors[fg_masks]
  261. strides_pos = strides[fg_masks]
  262. ## compute dfl
  263. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
  264. loss_dfl = loss_dfl.sum() / num_fgs
  265. # total loss
  266. losses = self.loss_cls_weight * loss_cls + \
  267. self.loss_box_weight * loss_box + \
  268. self.loss_dfl_weight * loss_dfl
  269. loss_dict = dict(
  270. loss_cls = loss_cls,
  271. loss_box = loss_box,
  272. loss_dfl = loss_dfl,
  273. losses = losses
  274. )
  275. # ------------------ Aux regression loss ------------------
  276. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  277. ## delta_preds
  278. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  279. delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
  280. ## aux loss
  281. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets, anchors_pos, strides_pos)
  282. loss_box_aux = loss_box_aux.sum() / num_fgs
  283. losses += loss_box_aux
  284. loss_dict['loss_box_aux'] = loss_box_aux
  285. return loss_dict
  286. def __call__(self, outputs, targets, epoch=0):
  287. if self.cfg['cls_loss'] == "bce":
  288. return self.compute_loss1(outputs, targets, epoch)
  289. elif self.cfg['cls_loss'] == "qfl":
  290. self.loss_box_weight = 2.0
  291. return self.compute_loss2(outputs, targets, epoch)
  292. else:
  293. raise NotImplementedError
  294. def build_criterion(args, cfg, device, num_classes):
  295. criterion = Criterion(
  296. args=args,
  297. cfg=cfg,
  298. device=device,
  299. num_classes=num_classes
  300. )
  301. return criterion
  302. if __name__ == "__main__":
  303. pass