optimizer.py 3.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. import torch
  2. import torch.nn as nn
  3. def build_yolo_optimizer(cfg, model, resume=None):
  4. print('==============================')
  5. print('Optimizer: {}'.format(cfg['optimizer']))
  6. print('--base lr: {}'.format(cfg['lr0']))
  7. print('--momentum: {}'.format(cfg['momentum']))
  8. print('--weight_decay: {}'.format(cfg['weight_decay']))
  9. g = [], [], [] # optimizer parameter groups
  10. bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
  11. for v in model.modules():
  12. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay)
  13. g[2].append(v.bias)
  14. if isinstance(v, bn): # weight (no decay)
  15. g[1].append(v.weight)
  16. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
  17. g[0].append(v.weight)
  18. if cfg['optimizer'] == 'adam':
  19. optimizer = torch.optim.Adam(g[2], lr=cfg['lr0']) # adjust beta1 to momentum
  20. elif cfg['optimizer'] == 'adamw':
  21. optimizer = torch.optim.AdamW(g[2], lr=cfg['lr0'], weight_decay=0.0)
  22. elif cfg['optimizer'] == 'sgd':
  23. optimizer = torch.optim.SGD(g[2], lr=cfg['lr0'], momentum=cfg['momentum'], nesterov=True)
  24. else:
  25. raise NotImplementedError('Optimizer {} not implemented.'.format(cfg['optimizer']))
  26. optimizer.add_param_group({'params': g[0], 'weight_decay': cfg['weight_decay']}) # add g0 with weight_decay
  27. optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
  28. start_epoch = 0
  29. if resume is not None:
  30. print('keep training: ', resume)
  31. checkpoint = torch.load(resume)
  32. # checkpoint state dict
  33. checkpoint_state_dict = checkpoint.pop("optimizer")
  34. optimizer.load_state_dict(checkpoint_state_dict)
  35. start_epoch = checkpoint.pop("epoch")
  36. return optimizer, start_epoch
  37. def build_detr_optimizer(cfg, model, resume=None):
  38. print('==============================')
  39. print('Optimizer: {}'.format(cfg['optimizer']))
  40. print('--base lr: {}'.format(cfg['lr0']))
  41. print('--weight_decay: {}'.format(cfg['weight_decay']))
  42. param_dicts = [
  43. {"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
  44. {
  45. "params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
  46. "lr": cfg['lr0'] * 0.1,
  47. },
  48. ]
  49. if cfg['optimizer'] == 'adam':
  50. optimizer = torch.optim.Adam(param_dicts, lr=cfg['lr0'], weight_decay=cfg['weight_decay'])
  51. elif cfg['optimizer'] == 'adamw':
  52. optimizer = torch.optim.AdamW(param_dicts, lr=cfg['lr0'], weight_decay=cfg['weight_decay'])
  53. else:
  54. raise NotImplementedError('Optimizer {} not implemented.'.format(cfg['optimizer']))
  55. start_epoch = 0
  56. if resume is not None:
  57. print('keep training: ', resume)
  58. checkpoint = torch.load(resume)
  59. # checkpoint state dict
  60. checkpoint_state_dict = checkpoint.pop("optimizer")
  61. optimizer.load_state_dict(checkpoint_state_dict)
  62. start_epoch = checkpoint.pop("epoch")
  63. return optimizer, start_epoch