engine.py 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.misc import MetricLogger, SmoothedValue
  11. from utils.vis_tools import vis_data
  12. # ----------------- Evaluator Components -----------------
  13. from evaluator.build import build_evluator
  14. # ----------------- Optimizer & LrScheduler Components -----------------
  15. from utils.solver.optimizer import build_yolo_optimizer, build_rtdetr_optimizer
  16. from utils.solver.lr_scheduler import build_lr_scheduler
  17. # ----------------- Dataset Components -----------------
  18. from dataset.build import build_dataset, build_transform
  19. # ----------------------- Det trainers -----------------------
  20. ## YOLOv8 Trainer
  21. class Yolov8Trainer(object):
  22. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  23. # ------------------- basic parameters -------------------
  24. self.args = args
  25. self.epoch = 0
  26. self.best_map = -1.
  27. self.device = device
  28. self.criterion = criterion
  29. self.world_size = world_size
  30. self.heavy_eval = False
  31. self.last_opt_step = 0
  32. self.clip_grad = 10
  33. # weak augmentatino stage
  34. self.second_stage = False
  35. self.third_stage = False
  36. self.second_stage_epoch = args.no_aug_epoch
  37. self.third_stage_epoch = args.no_aug_epoch // 2
  38. # path to save model
  39. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  40. os.makedirs(self.path_to_save, exist_ok=True)
  41. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  42. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  43. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  44. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  45. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  46. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  47. self.data_cfg = data_cfg
  48. self.model_cfg = model_cfg
  49. self.trans_cfg = trans_cfg
  50. # ---------------------------- Build Transform ----------------------------
  51. self.train_transform, self.trans_cfg = build_transform(
  52. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  53. self.val_transform, _ = build_transform(
  54. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  55. # ---------------------------- Build Dataset & Dataloader ----------------------------
  56. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  57. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  58. # ---------------------------- Build Evaluator ----------------------------
  59. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  60. # ---------------------------- Build Grad. Scaler ----------------------------
  61. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  62. # ---------------------------- Build Optimizer ----------------------------
  63. accumulate = max(1, round(64 / self.args.batch_size))
  64. print('Grad Accumulate: {}'.format(accumulate))
  65. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  66. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  67. # ---------------------------- Build LR Scheduler ----------------------------
  68. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  69. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  70. if self.args.resume and self.args.resume != 'None':
  71. self.lr_scheduler.step()
  72. # ---------------------------- Build Model-EMA ----------------------------
  73. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  74. print('Build ModelEMA ...')
  75. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  76. else:
  77. self.model_ema = None
  78. def train(self, model):
  79. for epoch in range(self.start_epoch, self.args.max_epoch):
  80. if self.args.distributed:
  81. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  82. # check second stage
  83. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  84. self.check_second_stage()
  85. # save model of the last mosaic epoch
  86. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  87. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  88. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  89. torch.save({'model': model.state_dict(),
  90. 'mAP': round(self.evaluator.map*100, 1),
  91. 'optimizer': self.optimizer.state_dict(),
  92. 'epoch': self.epoch,
  93. 'args': self.args},
  94. checkpoint_path)
  95. # check third stage
  96. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  97. self.check_third_stage()
  98. # save model of the last mosaic epoch
  99. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  100. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  101. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  102. torch.save({'model': model.state_dict(),
  103. 'mAP': round(self.evaluator.map*100, 1),
  104. 'optimizer': self.optimizer.state_dict(),
  105. 'epoch': self.epoch,
  106. 'args': self.args},
  107. checkpoint_path)
  108. # train one epoch
  109. self.epoch = epoch
  110. self.train_one_epoch(model)
  111. # eval one epoch
  112. if self.heavy_eval:
  113. model_eval = model.module if self.args.distributed else model
  114. self.eval(model_eval)
  115. else:
  116. model_eval = model.module if self.args.distributed else model
  117. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  118. self.eval(model_eval)
  119. if self.args.debug:
  120. print("For debug mode, we only train 1 epoch")
  121. break
  122. def eval(self, model):
  123. # chech model
  124. model_eval = model if self.model_ema is None else self.model_ema.ema
  125. if distributed_utils.is_main_process():
  126. # check evaluator
  127. if self.evaluator is None:
  128. print('No evaluator ... save model and go on training.')
  129. print('Saving state, epoch: {}'.format(self.epoch))
  130. weight_name = '{}_no_eval.pth'.format(self.args.model)
  131. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  132. torch.save({'model': model_eval.state_dict(),
  133. 'mAP': -1.,
  134. 'optimizer': self.optimizer.state_dict(),
  135. 'epoch': self.epoch,
  136. 'args': self.args},
  137. checkpoint_path)
  138. else:
  139. print('eval ...')
  140. # set eval mode
  141. model_eval.trainable = False
  142. model_eval.eval()
  143. # evaluate
  144. with torch.no_grad():
  145. self.evaluator.evaluate(model_eval)
  146. # save model
  147. cur_map = self.evaluator.map
  148. if cur_map > self.best_map:
  149. # update best-map
  150. self.best_map = cur_map
  151. # save model
  152. print('Saving state, epoch:', self.epoch)
  153. weight_name = '{}_best.pth'.format(self.args.model)
  154. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  155. torch.save({'model': model_eval.state_dict(),
  156. 'mAP': round(self.best_map*100, 1),
  157. 'optimizer': self.optimizer.state_dict(),
  158. 'epoch': self.epoch,
  159. 'args': self.args},
  160. checkpoint_path)
  161. # set train mode.
  162. model_eval.trainable = True
  163. model_eval.train()
  164. if self.args.distributed:
  165. # wait for all processes to synchronize
  166. dist.barrier()
  167. def train_one_epoch(self, model):
  168. # basic parameters
  169. epoch_size = len(self.train_loader)
  170. img_size = self.args.img_size
  171. t0 = time.time()
  172. nw = epoch_size * self.args.wp_epoch
  173. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  174. # train one epoch
  175. for iter_i, (images, targets) in enumerate(self.train_loader):
  176. ni = iter_i + self.epoch * epoch_size
  177. # Warmup
  178. if ni <= nw:
  179. xi = [0, nw] # x interp
  180. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  181. for j, x in enumerate(self.optimizer.param_groups):
  182. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  183. x['lr'] = np.interp(
  184. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  185. if 'momentum' in x:
  186. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  187. # to device
  188. images = images.to(self.device, non_blocking=True).float()
  189. # Multi scale
  190. if self.args.multi_scale:
  191. images, targets, img_size = self.rescale_image_targets(
  192. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  193. else:
  194. targets = self.refine_targets(targets, self.args.min_box_size)
  195. # visualize train targets
  196. if self.args.vis_tgt:
  197. vis_data(images*255, targets)
  198. # inference
  199. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  200. outputs = model(images)
  201. # loss
  202. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  203. losses = loss_dict['losses']
  204. losses *= images.shape[0] # loss * bs
  205. # reduce
  206. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  207. # gradient averaged between devices in DDP mode
  208. losses *= distributed_utils.get_world_size()
  209. # backward
  210. self.scaler.scale(losses).backward()
  211. # Optimize
  212. if ni - self.last_opt_step >= accumulate:
  213. if self.clip_grad > 0:
  214. # unscale gradients
  215. self.scaler.unscale_(self.optimizer)
  216. # clip gradients
  217. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  218. # optimizer.step
  219. self.scaler.step(self.optimizer)
  220. self.scaler.update()
  221. self.optimizer.zero_grad()
  222. # ema
  223. if self.model_ema is not None:
  224. self.model_ema.update(model)
  225. self.last_opt_step = ni
  226. # display
  227. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  228. t1 = time.time()
  229. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  230. # basic infor
  231. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  232. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  233. log += '[lr: {:.6f}]'.format(cur_lr[2])
  234. # loss infor
  235. for k in loss_dict_reduced.keys():
  236. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  237. # other infor
  238. log += '[time: {:.2f}]'.format(t1 - t0)
  239. log += '[size: {}]'.format(img_size)
  240. # print log infor
  241. print(log, flush=True)
  242. t0 = time.time()
  243. if self.args.debug:
  244. print("For debug mode, we only train 1 iteration")
  245. break
  246. self.lr_scheduler.step()
  247. def check_second_stage(self):
  248. # set second stage
  249. print('============== Second stage of Training ==============')
  250. self.second_stage = True
  251. # close mosaic augmentation
  252. if self.train_loader.dataset.mosaic_prob > 0.:
  253. print(' - Close < Mosaic Augmentation > ...')
  254. self.train_loader.dataset.mosaic_prob = 0.
  255. self.heavy_eval = True
  256. # close mixup augmentation
  257. if self.train_loader.dataset.mixup_prob > 0.:
  258. print(' - Close < Mixup Augmentation > ...')
  259. self.train_loader.dataset.mixup_prob = 0.
  260. self.heavy_eval = True
  261. # close rotation augmentation
  262. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  263. print(' - Close < degress of rotation > ...')
  264. self.trans_cfg['degrees'] = 0.0
  265. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  266. print(' - Close < shear of rotation >...')
  267. self.trans_cfg['shear'] = 0.0
  268. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  269. print(' - Close < perspective of rotation > ...')
  270. self.trans_cfg['perspective'] = 0.0
  271. # build a new transform for second stage
  272. print(' - Rebuild transforms ...')
  273. self.train_transform, self.trans_cfg = build_transform(
  274. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  275. self.train_loader.dataset.transform = self.train_transform
  276. def check_third_stage(self):
  277. # set third stage
  278. print('============== Third stage of Training ==============')
  279. self.third_stage = True
  280. # close random affine
  281. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  282. print(' - Close < translate of affine > ...')
  283. self.trans_cfg['translate'] = 0.0
  284. if 'scale' in self.trans_cfg.keys():
  285. print(' - Close < scale of affine >...')
  286. self.trans_cfg['scale'] = [1.0, 1.0]
  287. # build a new transform for second stage
  288. print(' - Rebuild transforms ...')
  289. self.train_transform, self.trans_cfg = build_transform(
  290. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  291. self.train_loader.dataset.transform = self.train_transform
  292. def refine_targets(self, targets, min_box_size):
  293. # rescale targets
  294. for tgt in targets:
  295. boxes = tgt["boxes"].clone()
  296. labels = tgt["labels"].clone()
  297. # refine tgt
  298. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  299. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  300. keep = (min_tgt_size >= min_box_size)
  301. tgt["boxes"] = boxes[keep]
  302. tgt["labels"] = labels[keep]
  303. return targets
  304. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  305. """
  306. Deployed for Multi scale trick.
  307. """
  308. if isinstance(stride, int):
  309. max_stride = stride
  310. elif isinstance(stride, list):
  311. max_stride = max(stride)
  312. # During training phase, the shape of input image is square.
  313. old_img_size = images.shape[-1]
  314. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  315. new_img_size = new_img_size // max_stride * max_stride # size
  316. if new_img_size / old_img_size != 1:
  317. # interpolate
  318. images = torch.nn.functional.interpolate(
  319. input=images,
  320. size=new_img_size,
  321. mode='bilinear',
  322. align_corners=False)
  323. # rescale targets
  324. for tgt in targets:
  325. boxes = tgt["boxes"].clone()
  326. labels = tgt["labels"].clone()
  327. boxes = torch.clamp(boxes, 0, old_img_size)
  328. # rescale box
  329. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  330. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  331. # refine tgt
  332. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  333. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  334. keep = (min_tgt_size >= min_box_size)
  335. tgt["boxes"] = boxes[keep]
  336. tgt["labels"] = labels[keep]
  337. return images, targets, new_img_size
  338. ## YOLOX Trainer
  339. class YoloxTrainer(object):
  340. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  341. # ------------------- basic parameters -------------------
  342. self.args = args
  343. self.epoch = 0
  344. self.best_map = -1.
  345. self.device = device
  346. self.criterion = criterion
  347. self.world_size = world_size
  348. self.grad_accumulate = args.grad_accumulate
  349. self.no_aug_epoch = args.no_aug_epoch
  350. self.heavy_eval = False
  351. # weak augmentatino stage
  352. self.second_stage = False
  353. self.third_stage = False
  354. self.second_stage_epoch = args.no_aug_epoch
  355. self.third_stage_epoch = args.no_aug_epoch // 2
  356. # path to save model
  357. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  358. os.makedirs(self.path_to_save, exist_ok=True)
  359. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  360. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  361. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  362. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  363. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  364. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  365. self.data_cfg = data_cfg
  366. self.model_cfg = model_cfg
  367. self.trans_cfg = trans_cfg
  368. # ---------------------------- Build Transform ----------------------------
  369. self.train_transform, self.trans_cfg = build_transform(
  370. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  371. self.val_transform, _ = build_transform(
  372. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  373. # ---------------------------- Build Dataset & Dataloader ----------------------------
  374. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  375. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  376. # ---------------------------- Build Evaluator ----------------------------
  377. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  378. # ---------------------------- Build Grad. Scaler ----------------------------
  379. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  380. # ---------------------------- Build Optimizer ----------------------------
  381. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  382. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  383. # ---------------------------- Build LR Scheduler ----------------------------
  384. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  385. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  386. if self.args.resume and self.args.resume != 'None':
  387. self.lr_scheduler.step()
  388. # ---------------------------- Build Model-EMA ----------------------------
  389. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  390. print('Build ModelEMA ...')
  391. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  392. else:
  393. self.model_ema = None
  394. def train(self, model):
  395. for epoch in range(self.start_epoch, self.args.max_epoch):
  396. if self.args.distributed:
  397. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  398. # check second stage
  399. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  400. self.check_second_stage()
  401. # save model of the last mosaic epoch
  402. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  403. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  404. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  405. torch.save({'model': model.state_dict(),
  406. 'mAP': round(self.evaluator.map*100, 1),
  407. 'optimizer': self.optimizer.state_dict(),
  408. 'epoch': self.epoch,
  409. 'args': self.args},
  410. checkpoint_path)
  411. # check third stage
  412. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  413. self.check_third_stage()
  414. # save model of the last mosaic epoch
  415. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  416. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  417. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  418. torch.save({'model': model.state_dict(),
  419. 'mAP': round(self.evaluator.map*100, 1),
  420. 'optimizer': self.optimizer.state_dict(),
  421. 'epoch': self.epoch,
  422. 'args': self.args},
  423. checkpoint_path)
  424. # train one epoch
  425. self.epoch = epoch
  426. self.train_one_epoch(model)
  427. # eval one epoch
  428. if self.heavy_eval:
  429. model_eval = model.module if self.args.distributed else model
  430. self.eval(model_eval)
  431. else:
  432. model_eval = model.module if self.args.distributed else model
  433. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  434. self.eval(model_eval)
  435. if self.args.debug:
  436. print("For debug mode, we only train 1 epoch")
  437. break
  438. def eval(self, model):
  439. # chech model
  440. model_eval = model if self.model_ema is None else self.model_ema.ema
  441. if distributed_utils.is_main_process():
  442. # check evaluator
  443. if self.evaluator is None:
  444. print('No evaluator ... save model and go on training.')
  445. print('Saving state, epoch: {}'.format(self.epoch))
  446. weight_name = '{}_no_eval.pth'.format(self.args.model)
  447. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  448. torch.save({'model': model_eval.state_dict(),
  449. 'mAP': -1.,
  450. 'optimizer': self.optimizer.state_dict(),
  451. 'epoch': self.epoch,
  452. 'args': self.args},
  453. checkpoint_path)
  454. else:
  455. print('eval ...')
  456. # set eval mode
  457. model_eval.trainable = False
  458. model_eval.eval()
  459. # evaluate
  460. with torch.no_grad():
  461. self.evaluator.evaluate(model_eval)
  462. # save model
  463. cur_map = self.evaluator.map
  464. if cur_map > self.best_map:
  465. # update best-map
  466. self.best_map = cur_map
  467. # save model
  468. print('Saving state, epoch:', self.epoch)
  469. weight_name = '{}_best.pth'.format(self.args.model)
  470. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  471. torch.save({'model': model_eval.state_dict(),
  472. 'mAP': round(self.best_map*100, 1),
  473. 'optimizer': self.optimizer.state_dict(),
  474. 'epoch': self.epoch,
  475. 'args': self.args},
  476. checkpoint_path)
  477. # set train mode.
  478. model_eval.trainable = True
  479. model_eval.train()
  480. if self.args.distributed:
  481. # wait for all processes to synchronize
  482. dist.barrier()
  483. def train_one_epoch(self, model):
  484. # basic parameters
  485. epoch_size = len(self.train_loader)
  486. img_size = self.args.img_size
  487. t0 = time.time()
  488. nw = epoch_size * self.args.wp_epoch
  489. # Train one epoch
  490. for iter_i, (images, targets) in enumerate(self.train_loader):
  491. ni = iter_i + self.epoch * epoch_size
  492. # Warmup
  493. if ni <= nw:
  494. xi = [0, nw] # x interp
  495. for j, x in enumerate(self.optimizer.param_groups):
  496. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  497. x['lr'] = np.interp(
  498. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  499. if 'momentum' in x:
  500. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  501. # To device
  502. images = images.to(self.device, non_blocking=True).float()
  503. # Multi scale
  504. if self.args.multi_scale and ni % 10 == 0:
  505. images, targets, img_size = self.rescale_image_targets(
  506. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  507. else:
  508. targets = self.refine_targets(targets, self.args.min_box_size)
  509. # Visualize train targets
  510. if self.args.vis_tgt:
  511. vis_data(images*255, targets)
  512. # Inference
  513. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  514. outputs = model(images)
  515. # Compute loss
  516. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  517. losses = loss_dict['losses']
  518. # Grad Accu
  519. if self.grad_accumulate > 1:
  520. losses /= self.grad_accumulate
  521. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  522. # Backward
  523. self.scaler.scale(losses).backward()
  524. # Optimize
  525. if ni % self.grad_accumulate == 0:
  526. self.scaler.step(self.optimizer)
  527. self.scaler.update()
  528. self.optimizer.zero_grad()
  529. # ema
  530. if self.model_ema is not None:
  531. self.model_ema.update(model)
  532. # Logs
  533. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  534. t1 = time.time()
  535. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  536. # basic infor
  537. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  538. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  539. log += '[lr: {:.6f}]'.format(cur_lr[2])
  540. # loss infor
  541. for k in loss_dict_reduced.keys():
  542. loss_val = loss_dict_reduced[k]
  543. if k == 'losses':
  544. loss_val *= self.grad_accumulate
  545. log += '[{}: {:.2f}]'.format(k, loss_val)
  546. # other infor
  547. log += '[time: {:.2f}]'.format(t1 - t0)
  548. log += '[size: {}]'.format(img_size)
  549. # print log infor
  550. print(log, flush=True)
  551. t0 = time.time()
  552. if self.args.debug:
  553. print("For debug mode, we only train 1 iteration")
  554. break
  555. # LR Schedule
  556. if not self.second_stage:
  557. self.lr_scheduler.step()
  558. def check_second_stage(self):
  559. # set second stage
  560. print('============== Second stage of Training ==============')
  561. self.second_stage = True
  562. # close mosaic augmentation
  563. if self.train_loader.dataset.mosaic_prob > 0.:
  564. print(' - Close < Mosaic Augmentation > ...')
  565. self.train_loader.dataset.mosaic_prob = 0.
  566. self.heavy_eval = True
  567. # close mixup augmentation
  568. if self.train_loader.dataset.mixup_prob > 0.:
  569. print(' - Close < Mixup Augmentation > ...')
  570. self.train_loader.dataset.mixup_prob = 0.
  571. self.heavy_eval = True
  572. # close rotation augmentation
  573. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  574. print(' - Close < degress of rotation > ...')
  575. self.trans_cfg['degrees'] = 0.0
  576. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  577. print(' - Close < shear of rotation >...')
  578. self.trans_cfg['shear'] = 0.0
  579. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  580. print(' - Close < perspective of rotation > ...')
  581. self.trans_cfg['perspective'] = 0.0
  582. # build a new transform for second stage
  583. print(' - Rebuild transforms ...')
  584. self.train_transform, self.trans_cfg = build_transform(
  585. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  586. self.train_loader.dataset.transform = self.train_transform
  587. def check_third_stage(self):
  588. # set third stage
  589. print('============== Third stage of Training ==============')
  590. self.third_stage = True
  591. # close random affine
  592. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  593. print(' - Close < translate of affine > ...')
  594. self.trans_cfg['translate'] = 0.0
  595. if 'scale' in self.trans_cfg.keys():
  596. print(' - Close < scale of affine >...')
  597. self.trans_cfg['scale'] = [1.0, 1.0]
  598. # build a new transform for second stage
  599. print(' - Rebuild transforms ...')
  600. self.train_transform, self.trans_cfg = build_transform(
  601. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  602. self.train_loader.dataset.transform = self.train_transform
  603. def refine_targets(self, targets, min_box_size):
  604. # rescale targets
  605. for tgt in targets:
  606. boxes = tgt["boxes"].clone()
  607. labels = tgt["labels"].clone()
  608. # refine tgt
  609. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  610. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  611. keep = (min_tgt_size >= min_box_size)
  612. tgt["boxes"] = boxes[keep]
  613. tgt["labels"] = labels[keep]
  614. return targets
  615. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  616. """
  617. Deployed for Multi scale trick.
  618. """
  619. if isinstance(stride, int):
  620. max_stride = stride
  621. elif isinstance(stride, list):
  622. max_stride = max(stride)
  623. # During training phase, the shape of input image is square.
  624. old_img_size = images.shape[-1]
  625. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  626. new_img_size = new_img_size // max_stride * max_stride # size
  627. if new_img_size / old_img_size != 1:
  628. # interpolate
  629. images = torch.nn.functional.interpolate(
  630. input=images,
  631. size=new_img_size,
  632. mode='bilinear',
  633. align_corners=False)
  634. # rescale targets
  635. for tgt in targets:
  636. boxes = tgt["boxes"].clone()
  637. labels = tgt["labels"].clone()
  638. boxes = torch.clamp(boxes, 0, old_img_size)
  639. # rescale box
  640. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  641. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  642. # refine tgt
  643. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  644. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  645. keep = (min_tgt_size >= min_box_size)
  646. tgt["boxes"] = boxes[keep]
  647. tgt["labels"] = labels[keep]
  648. return images, targets, new_img_size
  649. ## Real-time Convolutional Object Detector Trainer
  650. class RTCTrainer(object):
  651. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  652. # ------------------- basic parameters -------------------
  653. self.args = args
  654. self.epoch = 0
  655. self.best_map = -1.
  656. self.device = device
  657. self.criterion = criterion
  658. self.world_size = world_size
  659. self.grad_accumulate = args.grad_accumulate
  660. self.clip_grad = 35
  661. self.heavy_eval = False
  662. # weak augmentatino stage
  663. self.second_stage = False
  664. self.third_stage = False
  665. self.second_stage_epoch = args.no_aug_epoch
  666. self.third_stage_epoch = args.no_aug_epoch // 2
  667. # path to save model
  668. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  669. os.makedirs(self.path_to_save, exist_ok=True)
  670. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  671. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  672. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  673. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  674. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  675. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  676. self.data_cfg = data_cfg
  677. self.model_cfg = model_cfg
  678. self.trans_cfg = trans_cfg
  679. # ---------------------------- Build Transform ----------------------------
  680. self.train_transform, self.trans_cfg = build_transform(
  681. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  682. self.val_transform, _ = build_transform(
  683. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  684. # ---------------------------- Build Dataset & Dataloader ----------------------------
  685. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  686. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  687. # ---------------------------- Build Evaluator ----------------------------
  688. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  689. # ---------------------------- Build Grad. Scaler ----------------------------
  690. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  691. # ---------------------------- Build Optimizer ----------------------------
  692. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  693. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  694. # ---------------------------- Build LR Scheduler ----------------------------
  695. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  696. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  697. if self.args.resume and self.args.resume != 'None':
  698. self.lr_scheduler.step()
  699. # ---------------------------- Build Model-EMA ----------------------------
  700. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  701. print('Build ModelEMA ...')
  702. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  703. else:
  704. self.model_ema = None
  705. def train(self, model):
  706. for epoch in range(self.start_epoch, self.args.max_epoch):
  707. if self.args.distributed:
  708. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  709. # check second stage
  710. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  711. self.check_second_stage()
  712. # save model of the last mosaic epoch
  713. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  714. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  715. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  716. torch.save({'model': model.state_dict(),
  717. 'mAP': round(self.evaluator.map*100, 1),
  718. 'optimizer': self.optimizer.state_dict(),
  719. 'epoch': self.epoch,
  720. 'args': self.args},
  721. checkpoint_path)
  722. # check third stage
  723. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  724. self.check_third_stage()
  725. # save model of the last mosaic epoch
  726. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  727. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  728. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  729. torch.save({'model': model.state_dict(),
  730. 'mAP': round(self.evaluator.map*100, 1),
  731. 'optimizer': self.optimizer.state_dict(),
  732. 'epoch': self.epoch,
  733. 'args': self.args},
  734. checkpoint_path)
  735. # train one epoch
  736. self.epoch = epoch
  737. self.train_one_epoch(model)
  738. # eval one epoch
  739. if self.heavy_eval:
  740. model_eval = model.module if self.args.distributed else model
  741. self.eval(model_eval)
  742. else:
  743. model_eval = model.module if self.args.distributed else model
  744. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  745. self.eval(model_eval)
  746. if self.args.debug:
  747. print("For debug mode, we only train 1 epoch")
  748. break
  749. def eval(self, model):
  750. # chech model
  751. model_eval = model if self.model_ema is None else self.model_ema.ema
  752. if distributed_utils.is_main_process():
  753. # check evaluator
  754. if self.evaluator is None:
  755. print('No evaluator ... save model and go on training.')
  756. print('Saving state, epoch: {}'.format(self.epoch))
  757. weight_name = '{}_no_eval.pth'.format(self.args.model)
  758. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  759. torch.save({'model': model_eval.state_dict(),
  760. 'mAP': -1.,
  761. 'optimizer': self.optimizer.state_dict(),
  762. 'epoch': self.epoch,
  763. 'args': self.args},
  764. checkpoint_path)
  765. else:
  766. print('eval ...')
  767. # set eval mode
  768. model_eval.trainable = False
  769. model_eval.eval()
  770. # evaluate
  771. with torch.no_grad():
  772. self.evaluator.evaluate(model_eval)
  773. # save model
  774. cur_map = self.evaluator.map
  775. if cur_map > self.best_map:
  776. # update best-map
  777. self.best_map = cur_map
  778. # save model
  779. print('Saving state, epoch:', self.epoch)
  780. weight_name = '{}_best.pth'.format(self.args.model)
  781. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  782. torch.save({'model': model_eval.state_dict(),
  783. 'mAP': round(self.best_map*100, 1),
  784. 'optimizer': self.optimizer.state_dict(),
  785. 'epoch': self.epoch,
  786. 'args': self.args},
  787. checkpoint_path)
  788. # set train mode.
  789. model_eval.trainable = True
  790. model_eval.train()
  791. if self.args.distributed:
  792. # wait for all processes to synchronize
  793. dist.barrier()
  794. def train_one_epoch(self, model):
  795. metric_logger = MetricLogger(delimiter=" ")
  796. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  797. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  798. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  799. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  800. epoch_size = len(self.train_loader)
  801. print_freq = 10
  802. # basic parameters
  803. epoch_size = len(self.train_loader)
  804. img_size = self.args.img_size
  805. nw = epoch_size * self.args.wp_epoch
  806. # Train one epoch
  807. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  808. ni = iter_i + self.epoch * epoch_size
  809. # Warmup
  810. if ni <= nw:
  811. xi = [0, nw] # x interp
  812. for j, x in enumerate(self.optimizer.param_groups):
  813. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  814. x['lr'] = np.interp(
  815. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  816. if 'momentum' in x:
  817. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  818. # To device
  819. images = images.to(self.device, non_blocking=True).float()
  820. # Multi scale
  821. if self.args.multi_scale:
  822. images, targets, img_size = self.rescale_image_targets(
  823. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  824. else:
  825. targets = self.refine_targets(targets, self.args.min_box_size)
  826. # Visualize train targets
  827. if self.args.vis_tgt:
  828. vis_data(images*255, targets)
  829. # Inference
  830. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  831. outputs = model(images)
  832. # Compute loss
  833. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  834. losses = loss_dict['losses']
  835. # Grad Accumulate
  836. if self.grad_accumulate > 1:
  837. losses /= self.grad_accumulate
  838. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  839. # Backward
  840. self.scaler.scale(losses).backward()
  841. # Optimize
  842. if ni % self.grad_accumulate == 0:
  843. grad_norm = None
  844. if self.clip_grad > 0:
  845. # unscale gradients
  846. self.scaler.unscale_(self.optimizer)
  847. # clip gradients
  848. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  849. # optimizer.step
  850. self.scaler.step(self.optimizer)
  851. self.scaler.update()
  852. self.optimizer.zero_grad()
  853. # ema
  854. if self.model_ema is not None:
  855. self.model_ema.update(model)
  856. # Update log
  857. metric_logger.update(**loss_dict_reduced)
  858. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  859. metric_logger.update(grad_norm=grad_norm)
  860. metric_logger.update(size=img_size)
  861. if self.args.debug:
  862. print("For debug mode, we only train 1 iteration")
  863. break
  864. # LR Schedule
  865. if not self.second_stage:
  866. self.lr_scheduler.step()
  867. # Gather the stats from all processes
  868. metric_logger.synchronize_between_processes()
  869. print("Averaged stats:", metric_logger)
  870. def refine_targets(self, targets, min_box_size):
  871. # rescale targets
  872. for tgt in targets:
  873. boxes = tgt["boxes"].clone()
  874. labels = tgt["labels"].clone()
  875. # refine tgt
  876. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  877. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  878. keep = (min_tgt_size >= min_box_size)
  879. tgt["boxes"] = boxes[keep]
  880. tgt["labels"] = labels[keep]
  881. return targets
  882. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  883. """
  884. Deployed for Multi scale trick.
  885. """
  886. if isinstance(stride, int):
  887. max_stride = stride
  888. elif isinstance(stride, list):
  889. max_stride = max(stride)
  890. # During training phase, the shape of input image is square.
  891. old_img_size = images.shape[-1]
  892. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  893. new_img_size = new_img_size // max_stride * max_stride # size
  894. if new_img_size / old_img_size != 1:
  895. # interpolate
  896. images = torch.nn.functional.interpolate(
  897. input=images,
  898. size=new_img_size,
  899. mode='bilinear',
  900. align_corners=False)
  901. # rescale targets
  902. for tgt in targets:
  903. boxes = tgt["boxes"].clone()
  904. labels = tgt["labels"].clone()
  905. boxes = torch.clamp(boxes, 0, old_img_size)
  906. # rescale box
  907. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  908. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  909. # refine tgt
  910. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  911. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  912. keep = (min_tgt_size >= min_box_size)
  913. tgt["boxes"] = boxes[keep]
  914. tgt["labels"] = labels[keep]
  915. return images, targets, new_img_size
  916. def check_second_stage(self):
  917. # set second stage
  918. print('============== Second stage of Training ==============')
  919. self.second_stage = True
  920. # close mosaic augmentation
  921. if self.train_loader.dataset.mosaic_prob > 0.:
  922. print(' - Close < Mosaic Augmentation > ...')
  923. self.train_loader.dataset.mosaic_prob = 0.
  924. self.heavy_eval = True
  925. # close mixup augmentation
  926. if self.train_loader.dataset.mixup_prob > 0.:
  927. print(' - Close < Mixup Augmentation > ...')
  928. self.train_loader.dataset.mixup_prob = 0.
  929. self.heavy_eval = True
  930. # close rotation augmentation
  931. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  932. print(' - Close < degress of rotation > ...')
  933. self.trans_cfg['degrees'] = 0.0
  934. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  935. print(' - Close < shear of rotation >...')
  936. self.trans_cfg['shear'] = 0.0
  937. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  938. print(' - Close < perspective of rotation > ...')
  939. self.trans_cfg['perspective'] = 0.0
  940. # build a new transform for second stage
  941. print(' - Rebuild transforms ...')
  942. self.train_transform, self.trans_cfg = build_transform(
  943. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  944. self.train_loader.dataset.transform = self.train_transform
  945. def check_third_stage(self):
  946. # set third stage
  947. print('============== Third stage of Training ==============')
  948. self.third_stage = True
  949. # close random affine
  950. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  951. print(' - Close < translate of affine > ...')
  952. self.trans_cfg['translate'] = 0.0
  953. if 'scale' in self.trans_cfg.keys():
  954. print(' - Close < scale of affine >...')
  955. self.trans_cfg['scale'] = [1.0, 1.0]
  956. # build a new transform for second stage
  957. print(' - Rebuild transforms ...')
  958. self.train_transform, self.trans_cfg = build_transform(
  959. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  960. self.train_loader.dataset.transform = self.train_transform
  961. ## Real-time DETR Trainer
  962. class RTDetrTrainer(object):
  963. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  964. # ------------------- Basic parameters -------------------
  965. self.args = args
  966. self.epoch = 0
  967. self.best_map = -1.
  968. self.device = device
  969. self.criterion = criterion
  970. self.world_size = world_size
  971. self.grad_accumulate = args.grad_accumulate
  972. self.clip_grad = 0.1
  973. self.heavy_eval = False
  974. self.normalize_bbox = True
  975. # close AMP for RT-DETR
  976. self.args.fp16 = False
  977. # weak augmentatino stage
  978. self.second_stage = False
  979. self.second_stage_epoch = 5
  980. # path to save model
  981. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  982. os.makedirs(self.path_to_save, exist_ok=True)
  983. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  984. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.0001, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  985. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 1.0, 'warmup_iters': 2000} # no lr decay (because lrf is set 1.0)
  986. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  987. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  988. self.data_cfg = data_cfg
  989. self.model_cfg = model_cfg
  990. self.trans_cfg = trans_cfg
  991. # ---------------------------- Build Transform ----------------------------
  992. self.train_transform, self.trans_cfg = build_transform(
  993. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  994. self.val_transform, _ = build_transform(
  995. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  996. # ---------------------------- Build Dataset & Dataloader ----------------------------
  997. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  998. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  999. # ---------------------------- Build Evaluator ----------------------------
  1000. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1001. # ---------------------------- Build Grad. Scaler ----------------------------
  1002. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  1003. # ---------------------------- Build Optimizer ----------------------------
  1004. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1005. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1006. # ---------------------------- Build LR Scheduler ----------------------------
  1007. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1008. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1009. if self.args.resume and self.args.resume != 'None':
  1010. self.lr_scheduler.step()
  1011. # ---------------------------- Build Model-EMA ----------------------------
  1012. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1013. print('Build ModelEMA ...')
  1014. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1015. else:
  1016. self.model_ema = None
  1017. def train(self, model):
  1018. for epoch in range(self.start_epoch, self.args.max_epoch):
  1019. if self.args.distributed:
  1020. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1021. # check second stage
  1022. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1023. self.check_second_stage()
  1024. # save model of the last mosaic epoch
  1025. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1026. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1027. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1028. torch.save({'model': model.state_dict(),
  1029. 'mAP': round(self.evaluator.map*100, 1),
  1030. 'optimizer': self.optimizer.state_dict(),
  1031. 'epoch': self.epoch,
  1032. 'args': self.args},
  1033. checkpoint_path)
  1034. # train one epoch
  1035. self.epoch = epoch
  1036. self.train_one_epoch(model)
  1037. # eval one epoch
  1038. if self.heavy_eval:
  1039. model_eval = model.module if self.args.distributed else model
  1040. self.eval(model_eval)
  1041. else:
  1042. model_eval = model.module if self.args.distributed else model
  1043. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1044. self.eval(model_eval)
  1045. if self.args.debug:
  1046. print("For debug mode, we only train 1 epoch")
  1047. break
  1048. def eval(self, model):
  1049. # chech model
  1050. model_eval = model if self.model_ema is None else self.model_ema.ema
  1051. if distributed_utils.is_main_process():
  1052. # check evaluator
  1053. if self.evaluator is None:
  1054. print('No evaluator ... save model and go on training.')
  1055. print('Saving state, epoch: {}'.format(self.epoch))
  1056. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1057. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1058. torch.save({'model': model_eval.state_dict(),
  1059. 'mAP': -1.,
  1060. 'optimizer': self.optimizer.state_dict(),
  1061. 'epoch': self.epoch,
  1062. 'args': self.args},
  1063. checkpoint_path)
  1064. else:
  1065. print('eval ...')
  1066. # set eval mode
  1067. model_eval.eval()
  1068. # evaluate
  1069. with torch.no_grad():
  1070. self.evaluator.evaluate(model_eval)
  1071. # save model
  1072. cur_map = self.evaluator.map
  1073. if cur_map > self.best_map:
  1074. # update best-map
  1075. self.best_map = cur_map
  1076. # save model
  1077. print('Saving state, epoch:', self.epoch)
  1078. weight_name = '{}_best.pth'.format(self.args.model)
  1079. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1080. torch.save({'model': model_eval.state_dict(),
  1081. 'mAP': round(self.best_map*100, 1),
  1082. 'optimizer': self.optimizer.state_dict(),
  1083. 'epoch': self.epoch,
  1084. 'args': self.args},
  1085. checkpoint_path)
  1086. # set train mode.
  1087. model_eval.train()
  1088. if self.args.distributed:
  1089. # wait for all processes to synchronize
  1090. dist.barrier()
  1091. def train_one_epoch(self, model):
  1092. metric_logger = MetricLogger(delimiter=" ")
  1093. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1094. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1095. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1096. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1097. epoch_size = len(self.train_loader)
  1098. print_freq = 10
  1099. # basic parameters
  1100. epoch_size = len(self.train_loader)
  1101. img_size = self.args.img_size
  1102. nw = self.lr_schedule_dict['warmup_iters']
  1103. # Train one epoch
  1104. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1105. ni = iter_i + self.epoch * epoch_size
  1106. # Warmup
  1107. if ni <= nw:
  1108. xi = [0, nw] # x interp
  1109. for x in self.optimizer.param_groups:
  1110. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1111. # To device
  1112. images = images.to(self.device, non_blocking=True).float()
  1113. for tgt in targets:
  1114. tgt['boxes'] = tgt['boxes'].to(self.device)
  1115. tgt['labels'] = tgt['labels'].to(self.device)
  1116. # Multi scale
  1117. if self.args.multi_scale:
  1118. images, targets, img_size = self.rescale_image_targets(
  1119. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1120. else:
  1121. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1122. # xyxy -> cxcywh
  1123. targets = self.box_xyxy_to_cxcywh(targets)
  1124. # Visualize train targets
  1125. if self.args.vis_tgt:
  1126. targets = self.box_cxcywh_to_xyxy(targets)
  1127. vis_data(images, targets, normalized_bbox=self.normalize_bbox,
  1128. pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1129. targets = self.box_xyxy_to_cxcywh(targets)
  1130. # Inference
  1131. with torch.autocast(device_type=str(self.device), cache_enabled=True):
  1132. outputs = model(images, targets)
  1133. # Compute loss
  1134. with torch.autocast(device_type=str(self.device), enabled=False):
  1135. loss_dict = self.criterion(outputs, targets)
  1136. losses = sum(loss_dict.values())
  1137. # Grad Accumulate
  1138. if self.grad_accumulate > 1:
  1139. losses /= self.grad_accumulate
  1140. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1141. # Backward
  1142. self.scaler.scale(losses).backward()
  1143. # Optimize
  1144. if ni % self.grad_accumulate == 0:
  1145. grad_norm = None
  1146. if self.clip_grad > 0:
  1147. # unscale gradients
  1148. self.scaler.unscale_(self.optimizer)
  1149. # clip gradients
  1150. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1151. # optimizer.step
  1152. self.scaler.step(self.optimizer)
  1153. self.scaler.update()
  1154. self.optimizer.zero_grad()
  1155. # ema
  1156. if self.model_ema is not None:
  1157. self.model_ema.update(model)
  1158. # Update log
  1159. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  1160. metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
  1161. metric_logger.update(grad_norm=grad_norm)
  1162. metric_logger.update(size=img_size)
  1163. if self.args.debug:
  1164. print("For debug mode, we only train 1 iteration")
  1165. break
  1166. # LR Schedule
  1167. if not self.second_stage:
  1168. self.lr_scheduler.step()
  1169. def refine_targets(self, img_size, targets, min_box_size):
  1170. # rescale targets
  1171. for tgt in targets:
  1172. boxes = tgt["boxes"].clone()
  1173. labels = tgt["labels"].clone()
  1174. # refine tgt
  1175. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1176. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1177. keep = (min_tgt_size >= min_box_size)
  1178. if self.normalize_bbox:
  1179. # normalize box
  1180. boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
  1181. boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
  1182. tgt["boxes"] = boxes[keep]
  1183. tgt["labels"] = labels[keep]
  1184. return targets
  1185. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1186. """
  1187. Deployed for Multi scale trick.
  1188. """
  1189. if isinstance(stride, int):
  1190. max_stride = stride
  1191. elif isinstance(stride, list):
  1192. max_stride = max(stride)
  1193. # During training phase, the shape of input image is square.
  1194. old_img_size = images.shape[-1]
  1195. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1196. new_img_size = new_img_size // max_stride * max_stride # size
  1197. if new_img_size / old_img_size != 1:
  1198. # interpolate
  1199. images = torch.nn.functional.interpolate(
  1200. input=images,
  1201. size=new_img_size,
  1202. mode='bilinear',
  1203. align_corners=False)
  1204. # rescale targets
  1205. for tgt in targets:
  1206. boxes = tgt["boxes"].clone()
  1207. labels = tgt["labels"].clone()
  1208. boxes = torch.clamp(boxes, 0, old_img_size)
  1209. # rescale box
  1210. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1211. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1212. # refine tgt
  1213. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1214. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1215. keep = (min_tgt_size >= min_box_size)
  1216. if self.normalize_bbox:
  1217. # normalize box
  1218. boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
  1219. boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
  1220. tgt["boxes"] = boxes[keep]
  1221. tgt["labels"] = labels[keep]
  1222. return images, targets, new_img_size
  1223. def box_xyxy_to_cxcywh(self, targets):
  1224. # rescale targets
  1225. for tgt in targets:
  1226. boxes_xyxy = tgt["boxes"].clone()
  1227. # rescale box
  1228. cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
  1229. bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
  1230. boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
  1231. tgt["boxes"] = boxes_bwbh
  1232. return targets
  1233. def box_cxcywh_to_xyxy(self, targets):
  1234. # rescale targets
  1235. for tgt in targets:
  1236. boxes_cxcywh = tgt["boxes"].clone()
  1237. # rescale box
  1238. x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
  1239. x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
  1240. boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
  1241. tgt["boxes"] = boxes_bwbh
  1242. return targets
  1243. def check_second_stage(self):
  1244. # set second stage
  1245. print('============== Second stage of Training ==============')
  1246. self.second_stage = True
  1247. # close mosaic augmentation
  1248. if self.train_loader.dataset.mosaic_prob > 0.:
  1249. print(' - Close < Mosaic Augmentation > ...')
  1250. self.train_loader.dataset.mosaic_prob = 0.
  1251. self.heavy_eval = True
  1252. # close mixup augmentation
  1253. if self.train_loader.dataset.mixup_prob > 0.:
  1254. print(' - Close < Mixup Augmentation > ...')
  1255. self.train_loader.dataset.mixup_prob = 0.
  1256. self.heavy_eval = True
  1257. # close rotation augmentation
  1258. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1259. print(' - Close < degress of rotation > ...')
  1260. self.trans_cfg['degrees'] = 0.0
  1261. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1262. print(' - Close < shear of rotation >...')
  1263. self.trans_cfg['shear'] = 0.0
  1264. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1265. print(' - Close < perspective of rotation > ...')
  1266. self.trans_cfg['perspective'] = 0.0
  1267. # build a new transform for second stage
  1268. print(' - Rebuild transforms ...')
  1269. self.train_transform, self.trans_cfg = build_transform(
  1270. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1271. self.train_loader.dataset.transform = self.train_transform
  1272. ## Real-time PlainDETR Trainer
  1273. class RTPDetrTrainer(RTDetrTrainer):
  1274. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1275. super().__init__(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1276. # ------------------- Basic parameters -------------------
  1277. ## Reset optimzier hyper-parameters
  1278. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.05, 'lr0': 0.0002, 'backbone_lr_ratio': 0.1}
  1279. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 1000}
  1280. self.normalize_bbox = False
  1281. # ---------------------------- Build Optimizer ----------------------------
  1282. print("- Re-build oprimizer -")
  1283. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1284. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1285. # ---------------------------- Build LR Scheduler ----------------------------
  1286. print("- Re-build lr scheduler -")
  1287. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1288. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1289. if self.args.resume and self.args.resume != 'None':
  1290. self.lr_scheduler.step()
  1291. def train_one_epoch(self, model):
  1292. metric_logger = MetricLogger(delimiter=" ")
  1293. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1294. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1295. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1296. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1297. epoch_size = len(self.train_loader)
  1298. print_freq = 10
  1299. # basic parameters
  1300. epoch_size = len(self.train_loader)
  1301. img_size = self.args.img_size
  1302. nw = self.lr_schedule_dict['warmup_iters']
  1303. # Train one epoch
  1304. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1305. ni = iter_i + self.epoch * epoch_size
  1306. # Warmup
  1307. if ni <= nw:
  1308. xi = [0, nw] # x interp
  1309. for x in self.optimizer.param_groups:
  1310. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1311. # To device
  1312. images = images.to(self.device, non_blocking=True).float()
  1313. # Multi scale
  1314. if self.args.multi_scale:
  1315. images, targets, img_size = self.rescale_image_targets(
  1316. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1317. else:
  1318. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1319. # xyxy -> cxcywh
  1320. targets = self.box_xyxy_to_cxcywh(targets)
  1321. # Visualize train targets
  1322. if self.args.vis_tgt:
  1323. targets = self.box_cxcywh_to_xyxy(targets)
  1324. vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1325. targets = self.box_xyxy_to_cxcywh(targets)
  1326. # Inference
  1327. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1328. outputs = model(images)
  1329. # Compute loss
  1330. loss_dict = self.criterion(outputs, targets)
  1331. losses = sum(loss_dict.values())
  1332. # Grad Accumulate
  1333. if self.grad_accumulate > 1:
  1334. losses /= self.grad_accumulate
  1335. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1336. # Backward
  1337. self.scaler.scale(losses).backward()
  1338. # Optimize
  1339. if ni % self.grad_accumulate == 0:
  1340. grad_norm = None
  1341. if self.clip_grad > 0:
  1342. # unscale gradients
  1343. self.scaler.unscale_(self.optimizer)
  1344. # clip gradients
  1345. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1346. # optimizer.step
  1347. self.scaler.step(self.optimizer)
  1348. self.scaler.update()
  1349. self.optimizer.zero_grad()
  1350. # ema
  1351. if self.model_ema is not None:
  1352. self.model_ema.update(model)
  1353. # Update log
  1354. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  1355. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1356. metric_logger.update(grad_norm=grad_norm)
  1357. metric_logger.update(size=img_size)
  1358. if self.args.debug:
  1359. print("For debug mode, we only train 1 iteration")
  1360. break
  1361. # LR Schedule
  1362. if not self.second_stage:
  1363. self.lr_scheduler.step()
  1364. # ----------------------- Det + Seg trainers -----------------------
  1365. ## RTCDet Trainer for Det + Seg
  1366. class RTCTrainerDS(object):
  1367. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1368. # ------------------- basic parameters -------------------
  1369. self.args = args
  1370. self.epoch = 0
  1371. self.best_map = -1.
  1372. self.device = device
  1373. self.criterion = criterion
  1374. self.world_size = world_size
  1375. self.grad_accumulate = args.grad_accumulate
  1376. self.clip_grad = 35
  1377. self.heavy_eval = False
  1378. # weak augmentatino stage
  1379. self.second_stage = False
  1380. self.third_stage = False
  1381. self.second_stage_epoch = args.no_aug_epoch
  1382. self.third_stage_epoch = args.no_aug_epoch // 2
  1383. # path to save model
  1384. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1385. os.makedirs(self.path_to_save, exist_ok=True)
  1386. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1387. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1388. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1389. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1390. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1391. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1392. self.data_cfg = data_cfg
  1393. self.model_cfg = model_cfg
  1394. self.trans_cfg = trans_cfg
  1395. # ---------------------------- Build Transform ----------------------------
  1396. self.train_transform, self.trans_cfg = build_transform(
  1397. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1398. self.val_transform, _ = build_transform(
  1399. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1400. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1401. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1402. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1403. # ---------------------------- Build Evaluator ----------------------------
  1404. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1405. # ---------------------------- Build Grad. Scaler ----------------------------
  1406. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  1407. # ---------------------------- Build Optimizer ----------------------------
  1408. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1409. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1410. # ---------------------------- Build LR Scheduler ----------------------------
  1411. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1412. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1413. if self.args.resume and self.args.resume != 'None':
  1414. self.lr_scheduler.step()
  1415. # ---------------------------- Build Model-EMA ----------------------------
  1416. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1417. print('Build ModelEMA ...')
  1418. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1419. else:
  1420. self.model_ema = None
  1421. def train(self, model):
  1422. for epoch in range(self.start_epoch, self.args.max_epoch):
  1423. if self.args.distributed:
  1424. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1425. # check second stage
  1426. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1427. self.check_second_stage()
  1428. # save model of the last mosaic epoch
  1429. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1430. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1431. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1432. torch.save({'model': model.state_dict(),
  1433. 'mAP': round(self.evaluator.map*100, 1),
  1434. 'optimizer': self.optimizer.state_dict(),
  1435. 'epoch': self.epoch,
  1436. 'args': self.args},
  1437. checkpoint_path)
  1438. # check third stage
  1439. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1440. self.check_third_stage()
  1441. # save model of the last mosaic epoch
  1442. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1443. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1444. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1445. torch.save({'model': model.state_dict(),
  1446. 'mAP': round(self.evaluator.map*100, 1),
  1447. 'optimizer': self.optimizer.state_dict(),
  1448. 'epoch': self.epoch,
  1449. 'args': self.args},
  1450. checkpoint_path)
  1451. # train one epoch
  1452. self.epoch = epoch
  1453. self.train_one_epoch(model)
  1454. # eval one epoch
  1455. if self.heavy_eval:
  1456. model_eval = model.module if self.args.distributed else model
  1457. self.eval(model_eval)
  1458. else:
  1459. model_eval = model.module if self.args.distributed else model
  1460. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1461. self.eval(model_eval)
  1462. if self.args.debug:
  1463. print("For debug mode, we only train 1 epoch")
  1464. break
  1465. def eval(self, model):
  1466. # chech model
  1467. model_eval = model if self.model_ema is None else self.model_ema.ema
  1468. if distributed_utils.is_main_process():
  1469. # check evaluator
  1470. if self.evaluator is None:
  1471. print('No evaluator ... save model and go on training.')
  1472. print('Saving state, epoch: {}'.format(self.epoch))
  1473. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1474. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1475. torch.save({'model': model_eval.state_dict(),
  1476. 'mAP': -1.,
  1477. 'optimizer': self.optimizer.state_dict(),
  1478. 'epoch': self.epoch,
  1479. 'args': self.args},
  1480. checkpoint_path)
  1481. else:
  1482. print('eval ...')
  1483. # set eval mode
  1484. model_eval.trainable = False
  1485. model_eval.eval()
  1486. # evaluate
  1487. with torch.no_grad():
  1488. self.evaluator.evaluate(model_eval)
  1489. # save model
  1490. cur_map = self.evaluator.map
  1491. if cur_map > self.best_map:
  1492. # update best-map
  1493. self.best_map = cur_map
  1494. # save model
  1495. print('Saving state, epoch:', self.epoch)
  1496. weight_name = '{}_best.pth'.format(self.args.model)
  1497. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1498. torch.save({'model': model_eval.state_dict(),
  1499. 'mAP': round(self.best_map*100, 1),
  1500. 'optimizer': self.optimizer.state_dict(),
  1501. 'epoch': self.epoch,
  1502. 'args': self.args},
  1503. checkpoint_path)
  1504. # set train mode.
  1505. model_eval.trainable = True
  1506. model_eval.train()
  1507. if self.args.distributed:
  1508. # wait for all processes to synchronize
  1509. dist.barrier()
  1510. def train_one_epoch(self, model):
  1511. metric_logger = MetricLogger(delimiter=" ")
  1512. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1513. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1514. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1515. epoch_size = len(self.train_loader)
  1516. print_freq = 10
  1517. # basic parameters
  1518. epoch_size = len(self.train_loader)
  1519. img_size = self.args.img_size
  1520. nw = epoch_size * self.args.wp_epoch
  1521. # Train one epoch
  1522. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1523. ni = iter_i + self.epoch * epoch_size
  1524. # Warmup
  1525. if ni <= nw:
  1526. xi = [0, nw] # x interp
  1527. for j, x in enumerate(self.optimizer.param_groups):
  1528. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1529. x['lr'] = np.interp(
  1530. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1531. if 'momentum' in x:
  1532. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1533. # To device
  1534. images = images.to(self.device, non_blocking=True).float()
  1535. # Multi scale
  1536. if self.args.multi_scale:
  1537. images, targets, img_size = self.rescale_image_targets(
  1538. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1539. else:
  1540. targets = self.refine_targets(targets, self.args.min_box_size)
  1541. # Visualize train targets
  1542. if self.args.vis_tgt:
  1543. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1544. # Inference
  1545. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1546. outputs = model(images)
  1547. # Compute loss
  1548. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
  1549. det_loss_dict = loss_dict['det_loss_dict']
  1550. seg_loss_dict = loss_dict['seg_loss_dict']
  1551. # TODO: finish the backward + optimize
  1552. # # Update log
  1553. # metric_logger.update(**loss_dict_reduced)
  1554. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1555. # metric_logger.update(grad_norm=grad_norm)
  1556. # metric_logger.update(size=img_size)
  1557. if self.args.debug:
  1558. print("For debug mode, we only train 1 iteration")
  1559. break
  1560. # LR Schedule
  1561. if not self.second_stage:
  1562. self.lr_scheduler.step()
  1563. # Gather the stats from all processes
  1564. metric_logger.synchronize_between_processes()
  1565. print("Averaged stats:", metric_logger)
  1566. def refine_targets(self, targets, min_box_size):
  1567. # rescale targets
  1568. for tgt in targets:
  1569. boxes = tgt["boxes"].clone()
  1570. labels = tgt["labels"].clone()
  1571. # refine tgt
  1572. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1573. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1574. keep = (min_tgt_size >= min_box_size)
  1575. tgt["boxes"] = boxes[keep]
  1576. tgt["labels"] = labels[keep]
  1577. return targets
  1578. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1579. """
  1580. Deployed for Multi scale trick.
  1581. """
  1582. if isinstance(stride, int):
  1583. max_stride = stride
  1584. elif isinstance(stride, list):
  1585. max_stride = max(stride)
  1586. # During training phase, the shape of input image is square.
  1587. old_img_size = images.shape[-1]
  1588. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1589. new_img_size = new_img_size // max_stride * max_stride # size
  1590. if new_img_size / old_img_size != 1:
  1591. # interpolate
  1592. images = torch.nn.functional.interpolate(
  1593. input=images,
  1594. size=new_img_size,
  1595. mode='bilinear',
  1596. align_corners=False)
  1597. # rescale targets
  1598. for tgt in targets:
  1599. boxes = tgt["boxes"].clone()
  1600. labels = tgt["labels"].clone()
  1601. boxes = torch.clamp(boxes, 0, old_img_size)
  1602. # rescale box
  1603. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1604. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1605. # refine tgt
  1606. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1607. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1608. keep = (min_tgt_size >= min_box_size)
  1609. tgt["boxes"] = boxes[keep]
  1610. tgt["labels"] = labels[keep]
  1611. return images, targets, new_img_size
  1612. def check_second_stage(self):
  1613. # set second stage
  1614. print('============== Second stage of Training ==============')
  1615. self.second_stage = True
  1616. # close mosaic augmentation
  1617. if self.train_loader.dataset.mosaic_prob > 0.:
  1618. print(' - Close < Mosaic Augmentation > ...')
  1619. self.train_loader.dataset.mosaic_prob = 0.
  1620. self.heavy_eval = True
  1621. # close mixup augmentation
  1622. if self.train_loader.dataset.mixup_prob > 0.:
  1623. print(' - Close < Mixup Augmentation > ...')
  1624. self.train_loader.dataset.mixup_prob = 0.
  1625. self.heavy_eval = True
  1626. # close rotation augmentation
  1627. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1628. print(' - Close < degress of rotation > ...')
  1629. self.trans_cfg['degrees'] = 0.0
  1630. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1631. print(' - Close < shear of rotation >...')
  1632. self.trans_cfg['shear'] = 0.0
  1633. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1634. print(' - Close < perspective of rotation > ...')
  1635. self.trans_cfg['perspective'] = 0.0
  1636. # build a new transform for second stage
  1637. print(' - Rebuild transforms ...')
  1638. self.train_transform, self.trans_cfg = build_transform(
  1639. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1640. self.train_loader.dataset.transform = self.train_transform
  1641. def check_third_stage(self):
  1642. # set third stage
  1643. print('============== Third stage of Training ==============')
  1644. self.third_stage = True
  1645. # close random affine
  1646. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1647. print(' - Close < translate of affine > ...')
  1648. self.trans_cfg['translate'] = 0.0
  1649. if 'scale' in self.trans_cfg.keys():
  1650. print(' - Close < scale of affine >...')
  1651. self.trans_cfg['scale'] = [1.0, 1.0]
  1652. # build a new transform for second stage
  1653. print(' - Rebuild transforms ...')
  1654. self.train_transform, self.trans_cfg = build_transform(
  1655. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1656. self.train_loader.dataset.transform = self.train_transform
  1657. # ----------------------- Det + Seg + Pos trainers -----------------------
  1658. ## RTCDet Trainer for Det + Seg + HumanPose
  1659. class RTCTrainerDSP(object):
  1660. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1661. # ------------------- basic parameters -------------------
  1662. self.args = args
  1663. self.epoch = 0
  1664. self.best_map = -1.
  1665. self.device = device
  1666. self.criterion = criterion
  1667. self.world_size = world_size
  1668. self.grad_accumulate = args.grad_accumulate
  1669. self.clip_grad = 35
  1670. self.heavy_eval = False
  1671. # weak augmentatino stage
  1672. self.second_stage = False
  1673. self.third_stage = False
  1674. self.second_stage_epoch = args.no_aug_epoch
  1675. self.third_stage_epoch = args.no_aug_epoch // 2
  1676. # path to save model
  1677. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1678. os.makedirs(self.path_to_save, exist_ok=True)
  1679. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1680. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1681. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1682. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1683. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1684. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1685. self.data_cfg = data_cfg
  1686. self.model_cfg = model_cfg
  1687. self.trans_cfg = trans_cfg
  1688. # ---------------------------- Build Transform ----------------------------
  1689. self.train_transform, self.trans_cfg = build_transform(
  1690. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1691. self.val_transform, _ = build_transform(
  1692. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1693. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1694. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1695. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1696. # ---------------------------- Build Evaluator ----------------------------
  1697. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1698. # ---------------------------- Build Grad. Scaler ----------------------------
  1699. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  1700. # ---------------------------- Build Optimizer ----------------------------
  1701. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1702. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1703. # ---------------------------- Build LR Scheduler ----------------------------
  1704. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1705. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1706. if self.args.resume and self.args.resume != 'None':
  1707. self.lr_scheduler.step()
  1708. # ---------------------------- Build Model-EMA ----------------------------
  1709. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1710. print('Build ModelEMA ...')
  1711. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1712. else:
  1713. self.model_ema = None
  1714. def train(self, model):
  1715. for epoch in range(self.start_epoch, self.args.max_epoch):
  1716. if self.args.distributed:
  1717. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1718. # check second stage
  1719. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1720. self.check_second_stage()
  1721. # save model of the last mosaic epoch
  1722. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1723. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1724. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1725. torch.save({'model': model.state_dict(),
  1726. 'mAP': round(self.evaluator.map*100, 1),
  1727. 'optimizer': self.optimizer.state_dict(),
  1728. 'epoch': self.epoch,
  1729. 'args': self.args},
  1730. checkpoint_path)
  1731. # check third stage
  1732. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1733. self.check_third_stage()
  1734. # save model of the last mosaic epoch
  1735. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1736. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1737. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1738. torch.save({'model': model.state_dict(),
  1739. 'mAP': round(self.evaluator.map*100, 1),
  1740. 'optimizer': self.optimizer.state_dict(),
  1741. 'epoch': self.epoch,
  1742. 'args': self.args},
  1743. checkpoint_path)
  1744. # train one epoch
  1745. self.epoch = epoch
  1746. self.train_one_epoch(model)
  1747. # eval one epoch
  1748. if self.heavy_eval:
  1749. model_eval = model.module if self.args.distributed else model
  1750. self.eval(model_eval)
  1751. else:
  1752. model_eval = model.module if self.args.distributed else model
  1753. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1754. self.eval(model_eval)
  1755. if self.args.debug:
  1756. print("For debug mode, we only train 1 epoch")
  1757. break
  1758. def eval(self, model):
  1759. # chech model
  1760. model_eval = model if self.model_ema is None else self.model_ema.ema
  1761. if distributed_utils.is_main_process():
  1762. # check evaluator
  1763. if self.evaluator is None:
  1764. print('No evaluator ... save model and go on training.')
  1765. print('Saving state, epoch: {}'.format(self.epoch))
  1766. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1767. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1768. torch.save({'model': model_eval.state_dict(),
  1769. 'mAP': -1.,
  1770. 'optimizer': self.optimizer.state_dict(),
  1771. 'epoch': self.epoch,
  1772. 'args': self.args},
  1773. checkpoint_path)
  1774. else:
  1775. print('eval ...')
  1776. # set eval mode
  1777. model_eval.trainable = False
  1778. model_eval.eval()
  1779. # evaluate
  1780. with torch.no_grad():
  1781. self.evaluator.evaluate(model_eval)
  1782. # save model
  1783. cur_map = self.evaluator.map
  1784. if cur_map > self.best_map:
  1785. # update best-map
  1786. self.best_map = cur_map
  1787. # save model
  1788. print('Saving state, epoch:', self.epoch)
  1789. weight_name = '{}_best.pth'.format(self.args.model)
  1790. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1791. torch.save({'model': model_eval.state_dict(),
  1792. 'mAP': round(self.best_map*100, 1),
  1793. 'optimizer': self.optimizer.state_dict(),
  1794. 'epoch': self.epoch,
  1795. 'args': self.args},
  1796. checkpoint_path)
  1797. # set train mode.
  1798. model_eval.trainable = True
  1799. model_eval.train()
  1800. if self.args.distributed:
  1801. # wait for all processes to synchronize
  1802. dist.barrier()
  1803. def train_one_epoch(self, model):
  1804. metric_logger = MetricLogger(delimiter=" ")
  1805. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1806. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1807. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1808. epoch_size = len(self.train_loader)
  1809. print_freq = 10
  1810. # basic parameters
  1811. epoch_size = len(self.train_loader)
  1812. img_size = self.args.img_size
  1813. nw = epoch_size * self.args.wp_epoch
  1814. # Train one epoch
  1815. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1816. ni = iter_i + self.epoch * epoch_size
  1817. # Warmup
  1818. if ni <= nw:
  1819. xi = [0, nw] # x interp
  1820. for j, x in enumerate(self.optimizer.param_groups):
  1821. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1822. x['lr'] = np.interp(
  1823. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1824. if 'momentum' in x:
  1825. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1826. # To device
  1827. images = images.to(self.device, non_blocking=True).float()
  1828. # Multi scale
  1829. if self.args.multi_scale:
  1830. images, targets, img_size = self.rescale_image_targets(
  1831. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1832. else:
  1833. targets = self.refine_targets(targets, self.args.min_box_size)
  1834. # Visualize train targets
  1835. if self.args.vis_tgt:
  1836. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1837. # Inference
  1838. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1839. outputs = model(images)
  1840. # Compute loss
  1841. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
  1842. det_loss_dict = loss_dict['det_loss_dict']
  1843. seg_loss_dict = loss_dict['seg_loss_dict']
  1844. pos_loss_dict = loss_dict['pos_loss_dict']
  1845. # TODO: finish the backward + optimize
  1846. # # Update log
  1847. # metric_logger.update(**loss_dict_reduced)
  1848. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1849. # metric_logger.update(grad_norm=grad_norm)
  1850. # metric_logger.update(size=img_size)
  1851. if self.args.debug:
  1852. print("For debug mode, we only train 1 iteration")
  1853. break
  1854. # LR Schedule
  1855. if not self.second_stage:
  1856. self.lr_scheduler.step()
  1857. # Gather the stats from all processes
  1858. metric_logger.synchronize_between_processes()
  1859. print("Averaged stats:", metric_logger)
  1860. def refine_targets(self, targets, min_box_size):
  1861. # rescale targets
  1862. for tgt in targets:
  1863. boxes = tgt["boxes"].clone()
  1864. labels = tgt["labels"].clone()
  1865. # refine tgt
  1866. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1867. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1868. keep = (min_tgt_size >= min_box_size)
  1869. tgt["boxes"] = boxes[keep]
  1870. tgt["labels"] = labels[keep]
  1871. return targets
  1872. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1873. """
  1874. Deployed for Multi scale trick.
  1875. """
  1876. if isinstance(stride, int):
  1877. max_stride = stride
  1878. elif isinstance(stride, list):
  1879. max_stride = max(stride)
  1880. # During training phase, the shape of input image is square.
  1881. old_img_size = images.shape[-1]
  1882. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1883. new_img_size = new_img_size // max_stride * max_stride # size
  1884. if new_img_size / old_img_size != 1:
  1885. # interpolate
  1886. images = torch.nn.functional.interpolate(
  1887. input=images,
  1888. size=new_img_size,
  1889. mode='bilinear',
  1890. align_corners=False)
  1891. # rescale targets
  1892. for tgt in targets:
  1893. boxes = tgt["boxes"].clone()
  1894. labels = tgt["labels"].clone()
  1895. boxes = torch.clamp(boxes, 0, old_img_size)
  1896. # rescale box
  1897. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1898. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1899. # refine tgt
  1900. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1901. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1902. keep = (min_tgt_size >= min_box_size)
  1903. tgt["boxes"] = boxes[keep]
  1904. tgt["labels"] = labels[keep]
  1905. return images, targets, new_img_size
  1906. def check_second_stage(self):
  1907. # set second stage
  1908. print('============== Second stage of Training ==============')
  1909. self.second_stage = True
  1910. # close mosaic augmentation
  1911. if self.train_loader.dataset.mosaic_prob > 0.:
  1912. print(' - Close < Mosaic Augmentation > ...')
  1913. self.train_loader.dataset.mosaic_prob = 0.
  1914. self.heavy_eval = True
  1915. # close mixup augmentation
  1916. if self.train_loader.dataset.mixup_prob > 0.:
  1917. print(' - Close < Mixup Augmentation > ...')
  1918. self.train_loader.dataset.mixup_prob = 0.
  1919. self.heavy_eval = True
  1920. # close rotation augmentation
  1921. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1922. print(' - Close < degress of rotation > ...')
  1923. self.trans_cfg['degrees'] = 0.0
  1924. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1925. print(' - Close < shear of rotation >...')
  1926. self.trans_cfg['shear'] = 0.0
  1927. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1928. print(' - Close < perspective of rotation > ...')
  1929. self.trans_cfg['perspective'] = 0.0
  1930. # build a new transform for second stage
  1931. print(' - Rebuild transforms ...')
  1932. self.train_transform, self.trans_cfg = build_transform(
  1933. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1934. self.train_loader.dataset.transform = self.train_transform
  1935. def check_third_stage(self):
  1936. # set third stage
  1937. print('============== Third stage of Training ==============')
  1938. self.third_stage = True
  1939. # close random affine
  1940. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1941. print(' - Close < translate of affine > ...')
  1942. self.trans_cfg['translate'] = 0.0
  1943. if 'scale' in self.trans_cfg.keys():
  1944. print(' - Close < scale of affine >...')
  1945. self.trans_cfg['scale'] = [1.0, 1.0]
  1946. # build a new transform for second stage
  1947. print(' - Rebuild transforms ...')
  1948. self.train_transform, self.trans_cfg = build_transform(
  1949. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1950. self.train_loader.dataset.transform = self.train_transform
  1951. # Build Trainer
  1952. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1953. # ----------------------- Det trainers -----------------------
  1954. if model_cfg['trainer_type'] == 'yolov8':
  1955. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1956. elif model_cfg['trainer_type'] == 'yolox':
  1957. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1958. elif model_cfg['trainer_type'] == 'rtcdet':
  1959. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1960. elif model_cfg['trainer_type'] == 'rtdetr':
  1961. return RTDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1962. elif model_cfg['trainer_type'] == 'rtpdetr':
  1963. return RTPDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1964. # ----------------------- Det + Seg trainers -----------------------
  1965. elif model_cfg['trainer_type'] == 'rtcdet_ds':
  1966. return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1967. # ----------------------- Det + Seg + Pos trainers -----------------------
  1968. elif model_cfg['trainer_type'] == 'rtcdet_dsp':
  1969. return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1970. else:
  1971. raise NotImplementedError(model_cfg['trainer_type'])