optimizer.py 3.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. import torch
  2. import torch.nn as nn
  3. def build_yolo_optimizer(cfg, model, resume=None):
  4. print('==============================')
  5. print('Optimizer: {}'.format(cfg['optimizer']))
  6. print('--base lr: {}'.format(cfg['lr0']))
  7. print('--momentum: {}'.format(cfg['momentum']))
  8. print('--weight_decay: {}'.format(cfg['weight_decay']))
  9. g = [], [], [] # optimizer parameter groups
  10. bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
  11. for v in model.modules():
  12. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay)
  13. g[2].append(v.bias)
  14. if isinstance(v, bn): # weight (no decay)
  15. g[1].append(v.weight)
  16. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
  17. g[0].append(v.weight)
  18. if cfg['optimizer'] == 'adam':
  19. optimizer = torch.optim.Adam(g[2], lr=cfg['lr0']) # adjust beta1 to momentum
  20. elif cfg['optimizer'] == 'adamw':
  21. optimizer = torch.optim.AdamW(g[2], lr=cfg['lr0'], weight_decay=0.0)
  22. elif cfg['optimizer'] == 'sgd':
  23. optimizer = torch.optim.SGD(g[2], lr=cfg['lr0'], momentum=cfg['momentum'], nesterov=True)
  24. else:
  25. raise NotImplementedError('Optimizer {} not implemented.'.format(cfg['optimizer']))
  26. optimizer.add_param_group({'params': g[0], 'weight_decay': cfg['weight_decay']}) # add g0 with weight_decay
  27. optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
  28. start_epoch = 0
  29. if resume and resume != "None":
  30. print('keep training: ', resume)
  31. checkpoint = torch.load(resume, map_location='cpu')
  32. # checkpoint state dict
  33. checkpoint_state_dict = checkpoint.pop("optimizer")
  34. optimizer.load_state_dict(checkpoint_state_dict)
  35. start_epoch = checkpoint.pop("epoch") + 1
  36. del checkpoint, checkpoint_state_dict
  37. return optimizer, start_epoch
  38. def build_detr_optimizer(cfg, model, resume=None):
  39. print('==============================')
  40. print('Optimizer: {}'.format(cfg['optimizer']))
  41. print('--base lr: {}'.format(cfg['lr0']))
  42. print('--weight_decay: {}'.format(cfg['weight_decay']))
  43. param_dicts = [
  44. {"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
  45. {
  46. "params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
  47. "lr": cfg['lr0'] * cfg['backbone_lr_ratio'],
  48. },
  49. ]
  50. if cfg['optimizer'] == 'adam':
  51. optimizer = torch.optim.Adam(param_dicts, lr=cfg['lr0'], weight_decay=cfg['weight_decay'])
  52. elif cfg['optimizer'] == 'adamw':
  53. optimizer = torch.optim.AdamW(param_dicts, lr=cfg['lr0'], weight_decay=cfg['weight_decay'])
  54. else:
  55. raise NotImplementedError('Optimizer {} not implemented.'.format(cfg['optimizer']))
  56. start_epoch = 0
  57. if resume and resume != 'None':
  58. print('keep training: ', resume)
  59. checkpoint = torch.load(resume)
  60. # checkpoint state dict
  61. checkpoint_state_dict = checkpoint.pop("optimizer")
  62. optimizer.load_state_dict(checkpoint_state_dict)
  63. start_epoch = checkpoint.pop("epoch")
  64. return optimizer, start_epoch