| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- import numpy as np
- import torch
- import torch.nn as nn
- # ---------------------------- 2D CNN ----------------------------
- class SiLU(nn.Module):
- """export-friendly version of nn.SiLU()"""
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- # Basic conv layer
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type='lrelu', # activation
- norm_type='BN', # normalization
- depthwise=False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- p = p if d == 1 else d
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type:
- convs.append(get_norm(norm_type, c1))
- if act_type:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- # ---------------------------- Core Modules ----------------------------
- ## Scale Modulation Block
- class SMBlock(nn.Module):
- def __init__(self, in_dim, out_dim, expand_ratio=0.5, act_type='silu', norm_type='BN', depthwise=False):
- super(SMBlock, self).__init__()
- # -------------- Basic parameters --------------
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.expand_ratio = expand_ratio
- self.inter_dim = round(in_dim * expand_ratio)
- # -------------- Network parameters --------------
- ## Input proj
- self.cv1 = Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- ## Scale Modulation
- self.sm1 = Conv(self.inter_dim, self.inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.sm2 = Conv(self.inter_dim, self.inter_dim, k=5, p=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.sm3 = Conv(self.inter_dim, self.inter_dim, k=7, p=3, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- ## Output proj
- self.cv3 = Conv(self.inter_dim*4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def channel_shuffle(self, x, groups):
- # type: (torch.Tensor, int) -> torch.Tensor
- batchsize, num_channels, height, width = x.data.size()
- per_group_dim = num_channels // groups
- # reshape
- x = x.view(batchsize, groups, per_group_dim, height, width)
- x = torch.transpose(x, 1, 2).contiguous()
- # flatten
- x = x.view(batchsize, -1, height, width)
- return x
-
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.sm1(self.cv2(x))
- x3 = self.sm2(x2)
- x4 = self.sm3(x3)
- out = torch.cat([x1, x2, x3, x4], dim=1)
- out = self.channel_shuffle(out, groups=4)
- out = self.cv3(out)
- return out
- # ---------------------------- FPN Modules ----------------------------
- ## build fpn's core block
- def build_fpn_block(cfg, in_dim, out_dim):
- if cfg['fpn_core_block'] == 'smblock':
- layer = SMBlock(in_dim=in_dim,
- out_dim=out_dim,
- expand_ratio=cfg['fpn_expand_ratio'],
- act_type=cfg['fpn_act'],
- norm_type=cfg['fpn_norm'],
- depthwise=cfg['fpn_depthwise']
- )
-
- return layer
- ## build fpn's reduce layer
- def build_reduce_layer(cfg, in_dim, out_dim):
- if cfg['fpn_reduce_layer'] == 'conv':
- layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
-
- return layer
- ## build fpn's downsample layer
- def build_downsample_layer(cfg, in_dim, out_dim):
- if cfg['fpn_downsample_layer'] == 'conv':
- layer = Conv(in_dim, out_dim, k=3, s=2, p=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
- elif cfg['fpn_downsample_layer'] == 'maxpool':
- assert in_dim == out_dim
- layer = nn.MaxPool2d((2, 2), stride=2)
-
- return layer
|