| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- import torch
- import torch.nn as nn
- try:
- from .lodet_basic import Conv, SMBlock
- except:
- from lodet_basic import Conv, SMBlock
- model_urls = {
- 'smnet': None,
- }
- # ---------------------------- Backbones ----------------------------
- class ScaleModulationNet(nn.Module):
- def __init__(self, act_type='silu', norm_type='BN', depthwise=False):
- super(ScaleModulationNet, self).__init__()
- self.feat_dims = [128, 256, 256]
-
- # P1/2
- self.layer_1 = Conv(3, 32, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type)
- # P2/4
- self.layer_2 = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- SMBlock(32, 64, 0.5, act_type, norm_type, depthwise)
- )
- # P3/8
- self.layer_3 = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- SMBlock(64, 128, 0.5, act_type, norm_type, depthwise)
- )
- # P4/16
- self.layer_4 = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- SMBlock(128, 256, 0.5, act_type, norm_type, depthwise)
- )
- # P5/32
- self.layer_5 = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- SMBlock(256, 256, 0.25, act_type, norm_type, depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ---------------------------- Functions ----------------------------
- ## load pretrained weight
- def load_weight(model, model_name):
- # load weight
- print('Loading pretrained weight ...')
- url = model_urls[model_name]
- if url is not None:
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = model.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print(k)
- model.load_state_dict(checkpoint_state_dict)
- else:
- print('No pretrained for {}'.format(model_name))
- return model
- ## build SMnet
- def build_backbone(cfg, pretrained=False):
- # model
- backbone = ScaleModulationNet(
- act_type=cfg['bk_act'],
- norm_type=cfg['bk_norm'],
- depthwise=cfg['bk_dpw']
- )
- # check whether to load imagenet pretrained weight
- if pretrained:
- backbone = load_weight(backbone, model_name='smnet')
- feat_dims = backbone.feat_dims
- return backbone, feat_dims
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'pretrained': True,
- 'bk_act': 'silu',
- 'bk_norm': 'BN',
- 'bk_dpw': True,
- }
- model, feats = build_backbone(cfg)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|