yolov7.py 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov7_backbone import build_backbone
  5. from .yolov7_neck import build_neck
  6. from .yolov7_pafpn import build_fpn
  7. from .yolov7_head import build_head
  8. # YOLOv7
  9. class YOLOv7(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False):
  18. super(YOLOv7, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.device = device # cuda或者是cpu
  22. self.num_classes = num_classes # 类别的数量
  23. self.trainable = trainable # 训练的标记
  24. self.conf_thresh = conf_thresh # 得分阈值
  25. self.nms_thresh = nms_thresh # NMS阈值
  26. self.topk = topk # topk
  27. self.stride = [8, 16, 32] # 网络的输出步长
  28. # ------------------- Network Structure -------------------
  29. ## 主干网络
  30. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  31. ## 颈部网络: SPP模块
  32. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
  33. feats_dim[-1] = self.neck.out_dim
  34. ## 颈部网络: 特征金字塔
  35. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  36. self.head_dim = self.fpn.out_dim
  37. ## 检测头
  38. self.non_shared_heads = nn.ModuleList(
  39. [build_head(cfg, head_dim, head_dim, num_classes)
  40. for head_dim in self.head_dim
  41. ])
  42. ## 预测层
  43. self.obj_preds = nn.ModuleList(
  44. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  45. for head in self.non_shared_heads
  46. ])
  47. self.cls_preds = nn.ModuleList(
  48. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  49. for head in self.non_shared_heads
  50. ])
  51. self.reg_preds = nn.ModuleList(
  52. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  53. for head in self.non_shared_heads
  54. ])
  55. # ---------------------- Basic Functions ----------------------
  56. ## generate anchor points
  57. def generate_anchors(self, level, fmp_size):
  58. """
  59. fmp_size: (List) [H, W]
  60. """
  61. # generate grid cells
  62. fmp_h, fmp_w = fmp_size
  63. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  64. # [H, W, 2] -> [HW, 2]
  65. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  66. anchor_xy += 0.5 # add center offset
  67. anchor_xy *= self.stride[level]
  68. anchors = anchor_xy.to(self.device)
  69. return anchors
  70. ## post-process
  71. def post_process(self, obj_preds, cls_preds, box_preds):
  72. """
  73. Input:
  74. obj_preds: List(Tensor) [[H x W, 1], ...]
  75. cls_preds: List(Tensor) [[H x W, C], ...]
  76. box_preds: List(Tensor) [[H x W, 4], ...]
  77. anchors: List(Tensor) [[H x W, 2], ...]
  78. """
  79. all_scores = []
  80. all_labels = []
  81. all_bboxes = []
  82. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  83. conf_i = obj_pred_i[..., 0].sigmoid()
  84. conf_keep_i = conf_i > self.conf_thresh
  85. obj_pred_i = obj_pred_i[conf_keep_i]
  86. cls_pred_i = cls_pred_i[conf_keep_i]
  87. box_pred_i = box_pred_i[conf_keep_i]
  88. # (H x W x C,)
  89. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  90. # Keep top k top scoring indices only.
  91. num_topk = min(self.topk, box_pred_i.size(0))
  92. # torch.sort is actually faster than .topk (at least on GPUs)
  93. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  94. scores = predicted_prob[:num_topk]
  95. topk_idxs = topk_idxs[:num_topk]
  96. # # filter out the proposals with low confidence score
  97. # keep_idxs = scores > self.conf_thresh
  98. # scores = scores[keep_idxs]
  99. # topk_idxs = topk_idxs[keep_idxs]
  100. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  101. labels = topk_idxs % self.num_classes
  102. bboxes = box_pred_i[anchor_idxs]
  103. all_scores.append(scores)
  104. all_labels.append(labels)
  105. all_bboxes.append(bboxes)
  106. scores = torch.cat(all_scores)
  107. labels = torch.cat(all_labels)
  108. bboxes = torch.cat(all_bboxes)
  109. # to cpu & numpy
  110. scores = scores.cpu().numpy()
  111. labels = labels.cpu().numpy()
  112. bboxes = bboxes.cpu().numpy()
  113. # nms
  114. scores, labels, bboxes = multiclass_nms(
  115. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  116. return bboxes, scores, labels
  117. # ---------------------- Main Process for Inference ----------------------
  118. @torch.no_grad()
  119. def inference_single_image(self, x):
  120. # 主干网络
  121. pyramid_feats = self.backbone(x)
  122. # 颈部网络
  123. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  124. # 特征金字塔
  125. pyramid_feats = self.fpn(pyramid_feats)
  126. # 检测头
  127. all_obj_preds = []
  128. all_cls_preds = []
  129. all_box_preds = []
  130. all_anchors = []
  131. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  132. cls_feat, reg_feat = head(feat)
  133. # [1, C, H, W]
  134. obj_pred = self.obj_preds[level](reg_feat)
  135. cls_pred = self.cls_preds[level](cls_feat)
  136. reg_pred = self.reg_preds[level](reg_feat)
  137. # anchors: [M, 2]
  138. fmp_size = cls_pred.shape[-2:]
  139. anchors = self.generate_anchors(level, fmp_size)
  140. # [1, C, H, W] -> [H, W, C] -> [M, C]
  141. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  142. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  143. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  144. # decode bbox
  145. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  146. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  147. pred_x1y1 = ctr_pred - wh_pred * 0.5
  148. pred_x2y2 = ctr_pred + wh_pred * 0.5
  149. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  150. all_obj_preds.append(obj_pred)
  151. all_cls_preds.append(cls_pred)
  152. all_box_preds.append(box_pred)
  153. all_anchors.append(anchors)
  154. # post process
  155. bboxes, scores, labels = self.post_process(
  156. all_obj_preds, all_cls_preds, all_box_preds)
  157. return bboxes, scores, labels
  158. # ---------------------- Main Process for Training ----------------------
  159. def forward(self, x):
  160. if not self.trainable:
  161. return self.inference_single_image(x)
  162. else:
  163. # 主干网络
  164. pyramid_feats = self.backbone(x)
  165. # 颈部网络
  166. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  167. # 特征金字塔
  168. pyramid_feats = self.fpn(pyramid_feats)
  169. # 检测头
  170. all_anchors = []
  171. all_obj_preds = []
  172. all_cls_preds = []
  173. all_box_preds = []
  174. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  175. cls_feat, reg_feat = head(feat)
  176. # [B, C, H, W]
  177. obj_pred = self.obj_preds[level](reg_feat)
  178. cls_pred = self.cls_preds[level](cls_feat)
  179. reg_pred = self.reg_preds[level](reg_feat)
  180. B, _, H, W = cls_pred.size()
  181. fmp_size = [H, W]
  182. # generate anchor boxes: [M, 4]
  183. anchors = self.generate_anchors(level, fmp_size)
  184. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  185. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  186. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  187. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  188. # decode bbox
  189. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  190. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  191. pred_x1y1 = ctr_pred - wh_pred * 0.5
  192. pred_x2y2 = ctr_pred + wh_pred * 0.5
  193. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  194. all_obj_preds.append(obj_pred)
  195. all_cls_preds.append(cls_pred)
  196. all_box_preds.append(box_pred)
  197. all_anchors.append(anchors)
  198. # output dict
  199. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  200. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  201. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  202. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  203. 'strides': self.stride} # List(Int) [8, 16, 32]
  204. return outputs