yjh0410 1c33255e13 update RTCDet hace 1 año
..
README.md 6495457ee4 add RTCDet hace 1 año
build.py 6495457ee4 add RTCDet hace 1 año
loss.py 3ddb801333 update hace 1 año
matcher.py 6495457ee4 add RTCDet hace 1 año
rtcdet.py 6495457ee4 add RTCDet hace 1 año
rtcdet_backbone.py 1c33255e13 update RTCDet hace 1 año
rtcdet_basic.py 1c33255e13 update RTCDet hace 1 año
rtcdet_head.py 1c33255e13 update RTCDet hace 1 año
rtcdet_neck.py 6495457ee4 add RTCDet hace 1 año
rtcdet_pafpn.py 1c33255e13 update RTCDet hace 1 año
rtcdet_pred.py 6495457ee4 add RTCDet hace 1 año

README.md

RTCDet:

  • For training, we train RTCDet series with 500 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of RTCDet.
  • For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64, which is different from the official RTCDet. We have tried SGD, but it has weakened performance. For example, when using SGD, RTCDet-N's AP was only 35.8%, lower than the current result (36.8 %), perhaps because some hyperparameters were not set properly.
  • For learning rate scheduler, we use linear decay scheduler.

Train RTCDet

Single GPU

Taking training RTCDet-S on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m rtcdet_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 500 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale 

Multi GPU

Taking training RTCDet on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m rtcdet_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 500  --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ 

Test RTCDet

Taking testing RTCDet on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m rtcdet_s --weight path/to/RTCDet.pth -size 640 -vt 0.4 --show 

Evaluate RTCDet

Taking evaluating RTCDet on COCO-val as the example,

python eval.py --cuda -d coco-val --root path/to/coco -m rtcdet_s --weight path/to/RTCDet.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
RTCDet-N 8xb16 640
RTCDet-S 8xb16 640
RTCDet-M 8xb16 640
RTCDet-L 8xb16 640