| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- import torch
- import torch.nn as nn
- # --------------------- Basic modules ---------------------
- class SiLU(nn.Module):
- """export-friendly version of nn.SiLU()"""
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
- def get_conv2d(c1, c2, k, p, s, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size :int = 1, # kernel size
- padding :int = 0, # padding
- stride :int = 1, # padding
- act_type :str = 'silu', # activation
- norm_type :str = 'BN', # normalization
- depthwise :bool = False,
- ):
- super(BasicConv, self).__init__()
- self.depthwise = depthwise
- add_bias = False if norm_type else True
- if not depthwise:
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- else:
- self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, g=in_dim, bias=add_bias)
- self.norm1 = get_norm(norm_type, in_dim)
- self.conv2 = get_conv2d(in_dim, out_dim, k=1, d=0, s=1, g=1, bias=add_bias)
- self.norm2 = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- if not self.depthwise:
- return self.act(self.norm(self.conv(x)))
- else:
- return self.act(self.norm2(self.conv2(self.norm1(self.conv1(x)))))
- # --------------------- Yolov8 modules ---------------------
- ## Yolov8 BottleNeck
- class Bottleneck(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expand_ratio = 0.5,
- kernel_sizes = [3, 3],
- shortcut = True,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(Bottleneck, self).__init__()
- inter_dim = int(out_dim * expand_ratio) # hidden channels
- padding_sizes = [k // 2 for k in kernel_sizes]
- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=kernel_sizes[0], padding=padding_sizes[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.cv2 = BasicConv(inter_dim, out_dim, kernel_size=kernel_sizes[1], padding=padding_sizes[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv2(self.cv1(x))
- return x + h if self.shortcut else h
- # Yolov8 StageBlock
- class RTCBlock(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- num_blocks = 1,
- shortcut = False,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(RTCBlock, self).__init__()
- self.inter_dim = out_dim // 2
- self.input_proj = BasicConv(in_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.m = nn.ModuleList([
- Bottleneck(self.inter_dim, self.inter_dim, 1.0, [1, 3], shortcut, act_type, norm_type, depthwise)
- for _ in range(num_blocks)])
- self.output_proj = BasicConv((2 + num_blocks) * self.inter_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- # Input proj
- x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1)
- out = list([x1, x2])
- # Bottleneck
- out.extend(m(out[-1]) for m in self.m)
- # Output proj
- out = self.output_proj(torch.cat(out, dim=1))
- return out
-
|