rtcdet.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .rtcdet_backbone import build_backbone
  6. from .rtcdet_neck import build_neck
  7. from .rtcdet_pafpn import build_fpn
  8. from .rtcdet_head import build_head
  9. from .rtcdet_pred import build_predictor
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # YOLOv8
  13. class RTCDet(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. device,
  17. num_classes = 80,
  18. conf_thresh = 0.01,
  19. nms_thresh = 0.5,
  20. topk = 1000,
  21. trainable = False,
  22. deploy = False,
  23. no_multi_labels = False,
  24. nms_class_agnostic = False):
  25. super(RTCDet, self).__init__()
  26. # ---------------------- Basic Parameters ----------------------
  27. self.cfg = cfg
  28. self.device = device
  29. self.strides = cfg['stride']
  30. self.reg_max = cfg['reg_max']
  31. self.num_classes = num_classes
  32. self.trainable = trainable
  33. self.conf_thresh = conf_thresh
  34. self.nms_thresh = nms_thresh
  35. self.num_levels = len(self.strides)
  36. self.num_classes = num_classes
  37. self.topk_candidates = topk
  38. self.deploy = deploy
  39. self.no_multi_labels = no_multi_labels
  40. self.nms_class_agnostic = nms_class_agnostic
  41. # ---------------------- Network Parameters ----------------------
  42. ## ----------- Backbone -----------
  43. self.backbone, feat_dims = build_backbone(cfg)
  44. ## ----------- Neck: SPP -----------
  45. self.neck = build_neck(cfg, feat_dims[-1], feat_dims[-1])
  46. feat_dims[-1] = self.neck.out_dim
  47. ## ----------- Neck: FPN -----------
  48. self.fpn = build_fpn(cfg, feat_dims, round(256 * cfg['width']))
  49. self.fpn_dims = self.fpn.out_dims
  50. ## ----------- Heads -----------
  51. self.det_heads = build_head(cfg, self.fpn_dims, self.num_levels, num_classes, self.reg_max)
  52. cls_head_dim = self.det_heads.cls_head_dim
  53. reg_head_dim = self.det_heads.reg_head_dim
  54. ## ----------- Preds -----------
  55. self.pred_layers = build_predictor(cls_head_dim, reg_head_dim, self.strides, num_classes, 4, self.num_levels, self.reg_max)
  56. ## post-process
  57. def post_process(self, cls_preds, box_preds):
  58. """
  59. Input:
  60. cls_preds: List[np.array] -> [[M, C], ...]
  61. box_preds: List[np.array] -> [[M, 4], ...]
  62. Output:
  63. bboxes: np.array -> [N, 4]
  64. scores: np.array -> [N,]
  65. labels: np.array -> [N,]
  66. """
  67. assert len(cls_preds) == self.num_levels
  68. all_scores = []
  69. all_labels = []
  70. all_bboxes = []
  71. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  72. cls_pred_i = cls_pred_i[0]
  73. box_pred_i = box_pred_i[0]
  74. if self.no_multi_labels:
  75. # [M,]
  76. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  77. # Keep top k top scoring indices only.
  78. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  79. # topk candidates
  80. predicted_prob, topk_idxs = scores.sort(descending=True)
  81. topk_scores = predicted_prob[:num_topk]
  82. topk_idxs = topk_idxs[:num_topk]
  83. # filter out the proposals with low confidence score
  84. keep_idxs = topk_scores > self.conf_thresh
  85. scores = topk_scores[keep_idxs]
  86. topk_idxs = topk_idxs[keep_idxs]
  87. labels = labels[topk_idxs]
  88. bboxes = box_pred_i[topk_idxs]
  89. else:
  90. # [M, C] -> [MC,]
  91. scores_i = cls_pred_i.sigmoid().flatten()
  92. # Keep top k top scoring indices only.
  93. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  94. # torch.sort is actually faster than .topk (at least on GPUs)
  95. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  96. topk_scores = predicted_prob[:num_topk]
  97. topk_idxs = topk_idxs[:num_topk]
  98. # filter out the proposals with low confidence score
  99. keep_idxs = topk_scores > self.conf_thresh
  100. scores = topk_scores[keep_idxs]
  101. topk_idxs = topk_idxs[keep_idxs]
  102. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  103. labels = topk_idxs % self.num_classes
  104. bboxes = box_pred_i[anchor_idxs]
  105. all_scores.append(scores)
  106. all_labels.append(labels)
  107. all_bboxes.append(bboxes)
  108. scores = torch.cat(all_scores, dim=0)
  109. labels = torch.cat(all_labels, dim=0)
  110. bboxes = torch.cat(all_bboxes, dim=0)
  111. # to cpu & numpy
  112. scores = scores.cpu().numpy()
  113. labels = labels.cpu().numpy()
  114. bboxes = bboxes.cpu().numpy()
  115. # nms
  116. scores, labels, bboxes = multiclass_nms(
  117. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  118. return bboxes, scores, labels
  119. # ---------------------- Main Process for Inference ----------------------
  120. def forward(self, x):
  121. # ---------------- Backbone ----------------
  122. pyramid_feats = self.backbone(x)
  123. # ---------------- Neck: SPP ----------------
  124. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  125. # ---------------- Neck: PaFPN ----------------
  126. pyramid_feats = self.fpn(pyramid_feats)
  127. # ---------------- Heads ----------------
  128. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  129. # ---------------- Preds ----------------
  130. outputs = self.pred_layers(cls_feats, reg_feats)
  131. if not self.training:
  132. all_cls_preds = outputs['pred_cls']
  133. all_box_preds = outputs['pred_box']
  134. if self.deploy:
  135. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  136. box_preds = torch.cat(all_box_preds, dim=1)[0]
  137. scores = cls_preds.sigmoid()
  138. bboxes = box_preds
  139. # [n_anchors_all, 4 + C]
  140. outputs = torch.cat([bboxes, scores], dim=-1)
  141. else:
  142. # post process
  143. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  144. outputs = {
  145. "scores": scores,
  146. "labels": labels,
  147. "bboxes": bboxes
  148. }
  149. return outputs