engine.py 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.misc import MetricLogger, SmoothedValue
  11. from utils.vis_tools import vis_data
  12. # ----------------- Evaluator Components -----------------
  13. from evaluator.build import build_evluator
  14. # ----------------- Optimizer & LrScheduler Components -----------------
  15. from utils.solver.optimizer import build_yolo_optimizer, build_rtdetr_optimizer
  16. from utils.solver.lr_scheduler import build_lambda_lr_scheduler
  17. from utils.solver.lr_scheduler import build_wp_lr_scheduler, build_lr_scheduler
  18. # ----------------- Dataset Components -----------------
  19. from dataset.build import build_dataset, build_transform
  20. # ----------------------- Det trainers -----------------------
  21. ## YOLOv8 Trainer
  22. class Yolov8Trainer(object):
  23. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  24. # ------------------- basic parameters -------------------
  25. self.args = args
  26. self.epoch = 0
  27. self.best_map = -1.
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.last_opt_step = 0
  33. self.clip_grad = 10
  34. # weak augmentatino stage
  35. self.second_stage = False
  36. self.third_stage = False
  37. self.second_stage_epoch = args.no_aug_epoch
  38. self.third_stage_epoch = args.no_aug_epoch // 2
  39. # path to save model
  40. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  41. os.makedirs(self.path_to_save, exist_ok=True)
  42. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  43. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  44. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  45. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  46. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  47. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  48. self.data_cfg = data_cfg
  49. self.model_cfg = model_cfg
  50. self.trans_cfg = trans_cfg
  51. # ---------------------------- Build Transform ----------------------------
  52. self.train_transform, self.trans_cfg = build_transform(
  53. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  54. self.val_transform, _ = build_transform(
  55. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  56. # ---------------------------- Build Dataset & Dataloader ----------------------------
  57. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  58. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  59. # ---------------------------- Build Evaluator ----------------------------
  60. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  61. # ---------------------------- Build Grad. Scaler ----------------------------
  62. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  63. # ---------------------------- Build Optimizer ----------------------------
  64. accumulate = max(1, round(64 / self.args.batch_size))
  65. print('Grad Accumulate: {}'.format(accumulate))
  66. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  67. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  68. # ---------------------------- Build LR Scheduler ----------------------------
  69. self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  70. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  71. if self.args.resume and self.args.resume != 'None':
  72. self.lr_scheduler.step()
  73. # ---------------------------- Build Model-EMA ----------------------------
  74. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  75. print('Build ModelEMA ...')
  76. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  77. else:
  78. self.model_ema = None
  79. def train(self, model):
  80. for epoch in range(self.start_epoch, self.args.max_epoch):
  81. if self.args.distributed:
  82. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  83. # check second stage
  84. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  85. self.check_second_stage()
  86. # save model of the last mosaic epoch
  87. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  88. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  89. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  90. torch.save({'model': model.state_dict(),
  91. 'mAP': round(self.evaluator.map*100, 1),
  92. 'optimizer': self.optimizer.state_dict(),
  93. 'epoch': self.epoch,
  94. 'args': self.args},
  95. checkpoint_path)
  96. # check third stage
  97. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  98. self.check_third_stage()
  99. # save model of the last mosaic epoch
  100. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  101. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  102. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  103. torch.save({'model': model.state_dict(),
  104. 'mAP': round(self.evaluator.map*100, 1),
  105. 'optimizer': self.optimizer.state_dict(),
  106. 'epoch': self.epoch,
  107. 'args': self.args},
  108. checkpoint_path)
  109. # train one epoch
  110. self.epoch = epoch
  111. self.train_one_epoch(model)
  112. # eval one epoch
  113. if self.heavy_eval:
  114. model_eval = model.module if self.args.distributed else model
  115. self.eval(model_eval)
  116. else:
  117. model_eval = model.module if self.args.distributed else model
  118. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  119. self.eval(model_eval)
  120. if self.args.debug:
  121. print("For debug mode, we only train 1 epoch")
  122. break
  123. def eval(self, model):
  124. # chech model
  125. model_eval = model if self.model_ema is None else self.model_ema.ema
  126. if distributed_utils.is_main_process():
  127. # check evaluator
  128. if self.evaluator is None:
  129. print('No evaluator ... save model and go on training.')
  130. print('Saving state, epoch: {}'.format(self.epoch))
  131. weight_name = '{}_no_eval.pth'.format(self.args.model)
  132. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  133. torch.save({'model': model_eval.state_dict(),
  134. 'mAP': -1.,
  135. 'optimizer': self.optimizer.state_dict(),
  136. 'epoch': self.epoch,
  137. 'args': self.args},
  138. checkpoint_path)
  139. else:
  140. print('eval ...')
  141. # set eval mode
  142. model_eval.trainable = False
  143. model_eval.eval()
  144. # evaluate
  145. with torch.no_grad():
  146. self.evaluator.evaluate(model_eval)
  147. # save model
  148. cur_map = self.evaluator.map
  149. if cur_map > self.best_map:
  150. # update best-map
  151. self.best_map = cur_map
  152. # save model
  153. print('Saving state, epoch:', self.epoch)
  154. weight_name = '{}_best.pth'.format(self.args.model)
  155. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  156. torch.save({'model': model_eval.state_dict(),
  157. 'mAP': round(self.best_map*100, 1),
  158. 'optimizer': self.optimizer.state_dict(),
  159. 'epoch': self.epoch,
  160. 'args': self.args},
  161. checkpoint_path)
  162. # set train mode.
  163. model_eval.trainable = True
  164. model_eval.train()
  165. if self.args.distributed:
  166. # wait for all processes to synchronize
  167. dist.barrier()
  168. def train_one_epoch(self, model):
  169. # basic parameters
  170. epoch_size = len(self.train_loader)
  171. img_size = self.args.img_size
  172. t0 = time.time()
  173. nw = epoch_size * self.args.wp_epoch
  174. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  175. # train one epoch
  176. for iter_i, (images, targets) in enumerate(self.train_loader):
  177. ni = iter_i + self.epoch * epoch_size
  178. # Warmup
  179. if ni <= nw:
  180. xi = [0, nw] # x interp
  181. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  182. for j, x in enumerate(self.optimizer.param_groups):
  183. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  184. x['lr'] = np.interp(
  185. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  186. if 'momentum' in x:
  187. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  188. # to device
  189. images = images.to(self.device, non_blocking=True).float()
  190. # Multi scale
  191. if self.args.multi_scale:
  192. images, targets, img_size = self.rescale_image_targets(
  193. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  194. else:
  195. targets = self.refine_targets(targets, self.args.min_box_size)
  196. # visualize train targets
  197. if self.args.vis_tgt:
  198. vis_data(images*255, targets)
  199. # inference
  200. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  201. outputs = model(images)
  202. # loss
  203. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  204. losses = loss_dict['losses']
  205. losses *= images.shape[0] # loss * bs
  206. # reduce
  207. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  208. # gradient averaged between devices in DDP mode
  209. losses *= distributed_utils.get_world_size()
  210. # backward
  211. self.scaler.scale(losses).backward()
  212. # Optimize
  213. if ni - self.last_opt_step >= accumulate:
  214. if self.clip_grad > 0:
  215. # unscale gradients
  216. self.scaler.unscale_(self.optimizer)
  217. # clip gradients
  218. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  219. # optimizer.step
  220. self.scaler.step(self.optimizer)
  221. self.scaler.update()
  222. self.optimizer.zero_grad()
  223. # ema
  224. if self.model_ema is not None:
  225. self.model_ema.update(model)
  226. self.last_opt_step = ni
  227. # display
  228. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  229. t1 = time.time()
  230. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  231. # basic infor
  232. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  233. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  234. log += '[lr: {:.6f}]'.format(cur_lr[2])
  235. # loss infor
  236. for k in loss_dict_reduced.keys():
  237. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  238. # other infor
  239. log += '[time: {:.2f}]'.format(t1 - t0)
  240. log += '[size: {}]'.format(img_size)
  241. # print log infor
  242. print(log, flush=True)
  243. t0 = time.time()
  244. if self.args.debug:
  245. print("For debug mode, we only train 1 iteration")
  246. break
  247. self.lr_scheduler.step()
  248. def check_second_stage(self):
  249. # set second stage
  250. print('============== Second stage of Training ==============')
  251. self.second_stage = True
  252. # close mosaic augmentation
  253. if self.train_loader.dataset.mosaic_prob > 0.:
  254. print(' - Close < Mosaic Augmentation > ...')
  255. self.train_loader.dataset.mosaic_prob = 0.
  256. self.heavy_eval = True
  257. # close mixup augmentation
  258. if self.train_loader.dataset.mixup_prob > 0.:
  259. print(' - Close < Mixup Augmentation > ...')
  260. self.train_loader.dataset.mixup_prob = 0.
  261. self.heavy_eval = True
  262. # close rotation augmentation
  263. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  264. print(' - Close < degress of rotation > ...')
  265. self.trans_cfg['degrees'] = 0.0
  266. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  267. print(' - Close < shear of rotation >...')
  268. self.trans_cfg['shear'] = 0.0
  269. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  270. print(' - Close < perspective of rotation > ...')
  271. self.trans_cfg['perspective'] = 0.0
  272. # build a new transform for second stage
  273. print(' - Rebuild transforms ...')
  274. self.train_transform, self.trans_cfg = build_transform(
  275. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  276. self.train_loader.dataset.transform = self.train_transform
  277. def check_third_stage(self):
  278. # set third stage
  279. print('============== Third stage of Training ==============')
  280. self.third_stage = True
  281. # close random affine
  282. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  283. print(' - Close < translate of affine > ...')
  284. self.trans_cfg['translate'] = 0.0
  285. if 'scale' in self.trans_cfg.keys():
  286. print(' - Close < scale of affine >...')
  287. self.trans_cfg['scale'] = [1.0, 1.0]
  288. # build a new transform for second stage
  289. print(' - Rebuild transforms ...')
  290. self.train_transform, self.trans_cfg = build_transform(
  291. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  292. self.train_loader.dataset.transform = self.train_transform
  293. def refine_targets(self, targets, min_box_size):
  294. # rescale targets
  295. for tgt in targets:
  296. boxes = tgt["boxes"].clone()
  297. labels = tgt["labels"].clone()
  298. # refine tgt
  299. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  300. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  301. keep = (min_tgt_size >= min_box_size)
  302. tgt["boxes"] = boxes[keep]
  303. tgt["labels"] = labels[keep]
  304. return targets
  305. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  306. """
  307. Deployed for Multi scale trick.
  308. """
  309. if isinstance(stride, int):
  310. max_stride = stride
  311. elif isinstance(stride, list):
  312. max_stride = max(stride)
  313. # During training phase, the shape of input image is square.
  314. old_img_size = images.shape[-1]
  315. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  316. new_img_size = new_img_size // max_stride * max_stride # size
  317. if new_img_size / old_img_size != 1:
  318. # interpolate
  319. images = torch.nn.functional.interpolate(
  320. input=images,
  321. size=new_img_size,
  322. mode='bilinear',
  323. align_corners=False)
  324. # rescale targets
  325. for tgt in targets:
  326. boxes = tgt["boxes"].clone()
  327. labels = tgt["labels"].clone()
  328. boxes = torch.clamp(boxes, 0, old_img_size)
  329. # rescale box
  330. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  331. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  332. # refine tgt
  333. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  334. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  335. keep = (min_tgt_size >= min_box_size)
  336. tgt["boxes"] = boxes[keep]
  337. tgt["labels"] = labels[keep]
  338. return images, targets, new_img_size
  339. ## YOLOX Trainer
  340. class YoloxTrainer(object):
  341. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  342. # ------------------- basic parameters -------------------
  343. self.args = args
  344. self.epoch = 0
  345. self.best_map = -1.
  346. self.device = device
  347. self.criterion = criterion
  348. self.world_size = world_size
  349. self.grad_accumulate = args.grad_accumulate
  350. self.no_aug_epoch = args.no_aug_epoch
  351. self.heavy_eval = False
  352. # weak augmentatino stage
  353. self.second_stage = False
  354. self.third_stage = False
  355. self.second_stage_epoch = args.no_aug_epoch
  356. self.third_stage_epoch = args.no_aug_epoch // 2
  357. # path to save model
  358. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  359. os.makedirs(self.path_to_save, exist_ok=True)
  360. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  361. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  362. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  363. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  364. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  365. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  366. self.data_cfg = data_cfg
  367. self.model_cfg = model_cfg
  368. self.trans_cfg = trans_cfg
  369. # ---------------------------- Build Transform ----------------------------
  370. self.train_transform, self.trans_cfg = build_transform(
  371. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  372. self.val_transform, _ = build_transform(
  373. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  374. # ---------------------------- Build Dataset & Dataloader ----------------------------
  375. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  376. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  377. # ---------------------------- Build Evaluator ----------------------------
  378. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  379. # ---------------------------- Build Grad. Scaler ----------------------------
  380. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  381. # ---------------------------- Build Optimizer ----------------------------
  382. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  383. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  384. # ---------------------------- Build LR Scheduler ----------------------------
  385. self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  386. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  387. if self.args.resume and self.args.resume != 'None':
  388. self.lr_scheduler.step()
  389. # ---------------------------- Build Model-EMA ----------------------------
  390. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  391. print('Build ModelEMA ...')
  392. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  393. else:
  394. self.model_ema = None
  395. def train(self, model):
  396. for epoch in range(self.start_epoch, self.args.max_epoch):
  397. if self.args.distributed:
  398. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  399. # check second stage
  400. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  401. self.check_second_stage()
  402. # save model of the last mosaic epoch
  403. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  404. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  405. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  406. torch.save({'model': model.state_dict(),
  407. 'mAP': round(self.evaluator.map*100, 1),
  408. 'optimizer': self.optimizer.state_dict(),
  409. 'epoch': self.epoch,
  410. 'args': self.args},
  411. checkpoint_path)
  412. # check third stage
  413. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  414. self.check_third_stage()
  415. # save model of the last mosaic epoch
  416. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  417. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  418. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  419. torch.save({'model': model.state_dict(),
  420. 'mAP': round(self.evaluator.map*100, 1),
  421. 'optimizer': self.optimizer.state_dict(),
  422. 'epoch': self.epoch,
  423. 'args': self.args},
  424. checkpoint_path)
  425. # train one epoch
  426. self.epoch = epoch
  427. self.train_one_epoch(model)
  428. # eval one epoch
  429. if self.heavy_eval:
  430. model_eval = model.module if self.args.distributed else model
  431. self.eval(model_eval)
  432. else:
  433. model_eval = model.module if self.args.distributed else model
  434. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  435. self.eval(model_eval)
  436. if self.args.debug:
  437. print("For debug mode, we only train 1 epoch")
  438. break
  439. def eval(self, model):
  440. # chech model
  441. model_eval = model if self.model_ema is None else self.model_ema.ema
  442. if distributed_utils.is_main_process():
  443. # check evaluator
  444. if self.evaluator is None:
  445. print('No evaluator ... save model and go on training.')
  446. print('Saving state, epoch: {}'.format(self.epoch))
  447. weight_name = '{}_no_eval.pth'.format(self.args.model)
  448. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  449. torch.save({'model': model_eval.state_dict(),
  450. 'mAP': -1.,
  451. 'optimizer': self.optimizer.state_dict(),
  452. 'epoch': self.epoch,
  453. 'args': self.args},
  454. checkpoint_path)
  455. else:
  456. print('eval ...')
  457. # set eval mode
  458. model_eval.trainable = False
  459. model_eval.eval()
  460. # evaluate
  461. with torch.no_grad():
  462. self.evaluator.evaluate(model_eval)
  463. # save model
  464. cur_map = self.evaluator.map
  465. if cur_map > self.best_map:
  466. # update best-map
  467. self.best_map = cur_map
  468. # save model
  469. print('Saving state, epoch:', self.epoch)
  470. weight_name = '{}_best.pth'.format(self.args.model)
  471. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  472. torch.save({'model': model_eval.state_dict(),
  473. 'mAP': round(self.best_map*100, 1),
  474. 'optimizer': self.optimizer.state_dict(),
  475. 'epoch': self.epoch,
  476. 'args': self.args},
  477. checkpoint_path)
  478. # set train mode.
  479. model_eval.trainable = True
  480. model_eval.train()
  481. if self.args.distributed:
  482. # wait for all processes to synchronize
  483. dist.barrier()
  484. def train_one_epoch(self, model):
  485. # basic parameters
  486. epoch_size = len(self.train_loader)
  487. img_size = self.args.img_size
  488. t0 = time.time()
  489. nw = epoch_size * self.args.wp_epoch
  490. # Train one epoch
  491. for iter_i, (images, targets) in enumerate(self.train_loader):
  492. ni = iter_i + self.epoch * epoch_size
  493. # Warmup
  494. if ni <= nw:
  495. xi = [0, nw] # x interp
  496. for j, x in enumerate(self.optimizer.param_groups):
  497. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  498. x['lr'] = np.interp(
  499. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  500. if 'momentum' in x:
  501. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  502. # To device
  503. images = images.to(self.device, non_blocking=True).float()
  504. # Multi scale
  505. if self.args.multi_scale and ni % 10 == 0:
  506. images, targets, img_size = self.rescale_image_targets(
  507. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  508. else:
  509. targets = self.refine_targets(targets, self.args.min_box_size)
  510. # Visualize train targets
  511. if self.args.vis_tgt:
  512. vis_data(images*255, targets)
  513. # Inference
  514. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  515. outputs = model(images)
  516. # Compute loss
  517. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  518. losses = loss_dict['losses']
  519. # Grad Accu
  520. if self.grad_accumulate > 1:
  521. losses /= self.grad_accumulate
  522. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  523. # Backward
  524. self.scaler.scale(losses).backward()
  525. # Optimize
  526. if ni % self.grad_accumulate == 0:
  527. self.scaler.step(self.optimizer)
  528. self.scaler.update()
  529. self.optimizer.zero_grad()
  530. # ema
  531. if self.model_ema is not None:
  532. self.model_ema.update(model)
  533. # Logs
  534. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  535. t1 = time.time()
  536. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  537. # basic infor
  538. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  539. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  540. log += '[lr: {:.6f}]'.format(cur_lr[2])
  541. # loss infor
  542. for k in loss_dict_reduced.keys():
  543. loss_val = loss_dict_reduced[k]
  544. if k == 'losses':
  545. loss_val *= self.grad_accumulate
  546. log += '[{}: {:.2f}]'.format(k, loss_val)
  547. # other infor
  548. log += '[time: {:.2f}]'.format(t1 - t0)
  549. log += '[size: {}]'.format(img_size)
  550. # print log infor
  551. print(log, flush=True)
  552. t0 = time.time()
  553. if self.args.debug:
  554. print("For debug mode, we only train 1 iteration")
  555. break
  556. # LR Schedule
  557. if not self.second_stage:
  558. self.lr_scheduler.step()
  559. def check_second_stage(self):
  560. # set second stage
  561. print('============== Second stage of Training ==============')
  562. self.second_stage = True
  563. # close mosaic augmentation
  564. if self.train_loader.dataset.mosaic_prob > 0.:
  565. print(' - Close < Mosaic Augmentation > ...')
  566. self.train_loader.dataset.mosaic_prob = 0.
  567. self.heavy_eval = True
  568. # close mixup augmentation
  569. if self.train_loader.dataset.mixup_prob > 0.:
  570. print(' - Close < Mixup Augmentation > ...')
  571. self.train_loader.dataset.mixup_prob = 0.
  572. self.heavy_eval = True
  573. # close rotation augmentation
  574. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  575. print(' - Close < degress of rotation > ...')
  576. self.trans_cfg['degrees'] = 0.0
  577. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  578. print(' - Close < shear of rotation >...')
  579. self.trans_cfg['shear'] = 0.0
  580. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  581. print(' - Close < perspective of rotation > ...')
  582. self.trans_cfg['perspective'] = 0.0
  583. # build a new transform for second stage
  584. print(' - Rebuild transforms ...')
  585. self.train_transform, self.trans_cfg = build_transform(
  586. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  587. self.train_loader.dataset.transform = self.train_transform
  588. def check_third_stage(self):
  589. # set third stage
  590. print('============== Third stage of Training ==============')
  591. self.third_stage = True
  592. # close random affine
  593. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  594. print(' - Close < translate of affine > ...')
  595. self.trans_cfg['translate'] = 0.0
  596. if 'scale' in self.trans_cfg.keys():
  597. print(' - Close < scale of affine >...')
  598. self.trans_cfg['scale'] = [1.0, 1.0]
  599. # build a new transform for second stage
  600. print(' - Rebuild transforms ...')
  601. self.train_transform, self.trans_cfg = build_transform(
  602. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  603. self.train_loader.dataset.transform = self.train_transform
  604. def refine_targets(self, targets, min_box_size):
  605. # rescale targets
  606. for tgt in targets:
  607. boxes = tgt["boxes"].clone()
  608. labels = tgt["labels"].clone()
  609. # refine tgt
  610. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  611. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  612. keep = (min_tgt_size >= min_box_size)
  613. tgt["boxes"] = boxes[keep]
  614. tgt["labels"] = labels[keep]
  615. return targets
  616. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  617. """
  618. Deployed for Multi scale trick.
  619. """
  620. if isinstance(stride, int):
  621. max_stride = stride
  622. elif isinstance(stride, list):
  623. max_stride = max(stride)
  624. # During training phase, the shape of input image is square.
  625. old_img_size = images.shape[-1]
  626. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  627. new_img_size = new_img_size // max_stride * max_stride # size
  628. if new_img_size / old_img_size != 1:
  629. # interpolate
  630. images = torch.nn.functional.interpolate(
  631. input=images,
  632. size=new_img_size,
  633. mode='bilinear',
  634. align_corners=False)
  635. # rescale targets
  636. for tgt in targets:
  637. boxes = tgt["boxes"].clone()
  638. labels = tgt["labels"].clone()
  639. boxes = torch.clamp(boxes, 0, old_img_size)
  640. # rescale box
  641. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  642. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  643. # refine tgt
  644. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  645. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  646. keep = (min_tgt_size >= min_box_size)
  647. tgt["boxes"] = boxes[keep]
  648. tgt["labels"] = labels[keep]
  649. return images, targets, new_img_size
  650. ## Real-time Convolutional Object Detector Trainer
  651. class RTCTrainer(object):
  652. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  653. # ------------------- basic parameters -------------------
  654. self.args = args
  655. self.epoch = 0
  656. self.best_map = -1.
  657. self.device = device
  658. self.criterion = criterion
  659. self.world_size = world_size
  660. self.grad_accumulate = args.grad_accumulate
  661. self.clip_grad = 35
  662. self.heavy_eval = False
  663. # weak augmentatino stage
  664. self.second_stage = False
  665. self.third_stage = False
  666. self.second_stage_epoch = args.no_aug_epoch
  667. self.third_stage_epoch = args.no_aug_epoch // 2
  668. # path to save model
  669. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  670. os.makedirs(self.path_to_save, exist_ok=True)
  671. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  672. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  673. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  674. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  675. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  676. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  677. self.data_cfg = data_cfg
  678. self.model_cfg = model_cfg
  679. self.trans_cfg = trans_cfg
  680. # ---------------------------- Build Transform ----------------------------
  681. self.train_transform, self.trans_cfg = build_transform(
  682. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  683. self.val_transform, _ = build_transform(
  684. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  685. # ---------------------------- Build Dataset & Dataloader ----------------------------
  686. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  687. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  688. # ---------------------------- Build Evaluator ----------------------------
  689. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  690. # ---------------------------- Build Grad. Scaler ----------------------------
  691. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  692. # ---------------------------- Build Optimizer ----------------------------
  693. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  694. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  695. # ---------------------------- Build LR Scheduler ----------------------------
  696. self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  697. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  698. if self.args.resume and self.args.resume != 'None':
  699. self.lr_scheduler.step()
  700. # ---------------------------- Build Model-EMA ----------------------------
  701. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  702. print('Build ModelEMA ...')
  703. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  704. else:
  705. self.model_ema = None
  706. def train(self, model):
  707. for epoch in range(self.start_epoch, self.args.max_epoch):
  708. if self.args.distributed:
  709. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  710. # check second stage
  711. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  712. self.check_second_stage()
  713. # save model of the last mosaic epoch
  714. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  715. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  716. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  717. torch.save({'model': model.state_dict(),
  718. 'mAP': round(self.evaluator.map*100, 1),
  719. 'optimizer': self.optimizer.state_dict(),
  720. 'epoch': self.epoch,
  721. 'args': self.args},
  722. checkpoint_path)
  723. # check third stage
  724. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  725. self.check_third_stage()
  726. # save model of the last mosaic epoch
  727. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  728. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  729. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  730. torch.save({'model': model.state_dict(),
  731. 'mAP': round(self.evaluator.map*100, 1),
  732. 'optimizer': self.optimizer.state_dict(),
  733. 'epoch': self.epoch,
  734. 'args': self.args},
  735. checkpoint_path)
  736. # train one epoch
  737. self.epoch = epoch
  738. self.train_one_epoch(model)
  739. # eval one epoch
  740. if self.heavy_eval:
  741. model_eval = model.module if self.args.distributed else model
  742. self.eval(model_eval)
  743. else:
  744. model_eval = model.module if self.args.distributed else model
  745. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  746. self.eval(model_eval)
  747. if self.args.debug:
  748. print("For debug mode, we only train 1 epoch")
  749. break
  750. def eval(self, model):
  751. # chech model
  752. model_eval = model if self.model_ema is None else self.model_ema.ema
  753. if distributed_utils.is_main_process():
  754. # check evaluator
  755. if self.evaluator is None:
  756. print('No evaluator ... save model and go on training.')
  757. print('Saving state, epoch: {}'.format(self.epoch))
  758. weight_name = '{}_no_eval.pth'.format(self.args.model)
  759. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  760. torch.save({'model': model_eval.state_dict(),
  761. 'mAP': -1.,
  762. 'optimizer': self.optimizer.state_dict(),
  763. 'epoch': self.epoch,
  764. 'args': self.args},
  765. checkpoint_path)
  766. else:
  767. print('eval ...')
  768. # set eval mode
  769. model_eval.trainable = False
  770. model_eval.eval()
  771. # evaluate
  772. with torch.no_grad():
  773. self.evaluator.evaluate(model_eval)
  774. # save model
  775. cur_map = self.evaluator.map
  776. if cur_map > self.best_map:
  777. # update best-map
  778. self.best_map = cur_map
  779. # save model
  780. print('Saving state, epoch:', self.epoch)
  781. weight_name = '{}_best.pth'.format(self.args.model)
  782. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  783. torch.save({'model': model_eval.state_dict(),
  784. 'mAP': round(self.best_map*100, 1),
  785. 'optimizer': self.optimizer.state_dict(),
  786. 'epoch': self.epoch,
  787. 'args': self.args},
  788. checkpoint_path)
  789. # set train mode.
  790. model_eval.trainable = True
  791. model_eval.train()
  792. if self.args.distributed:
  793. # wait for all processes to synchronize
  794. dist.barrier()
  795. def train_one_epoch(self, model):
  796. metric_logger = MetricLogger(delimiter=" ")
  797. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  798. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  799. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  800. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  801. epoch_size = len(self.train_loader)
  802. print_freq = 10
  803. # basic parameters
  804. epoch_size = len(self.train_loader)
  805. img_size = self.args.img_size
  806. nw = epoch_size * self.args.wp_epoch
  807. # Train one epoch
  808. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  809. ni = iter_i + self.epoch * epoch_size
  810. # Warmup
  811. if ni <= nw:
  812. xi = [0, nw] # x interp
  813. for j, x in enumerate(self.optimizer.param_groups):
  814. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  815. x['lr'] = np.interp(
  816. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  817. if 'momentum' in x:
  818. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  819. # To device
  820. images = images.to(self.device, non_blocking=True).float()
  821. # Multi scale
  822. if self.args.multi_scale:
  823. images, targets, img_size = self.rescale_image_targets(
  824. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  825. else:
  826. targets = self.refine_targets(targets, self.args.min_box_size)
  827. # Visualize train targets
  828. if self.args.vis_tgt:
  829. vis_data(images*255, targets)
  830. # Inference
  831. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  832. outputs = model(images)
  833. # Compute loss
  834. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  835. losses = loss_dict['losses']
  836. # Grad Accumulate
  837. if self.grad_accumulate > 1:
  838. losses /= self.grad_accumulate
  839. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  840. # Backward
  841. self.scaler.scale(losses).backward()
  842. # Optimize
  843. if ni % self.grad_accumulate == 0:
  844. grad_norm = None
  845. if self.clip_grad > 0:
  846. # unscale gradients
  847. self.scaler.unscale_(self.optimizer)
  848. # clip gradients
  849. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  850. # optimizer.step
  851. self.scaler.step(self.optimizer)
  852. self.scaler.update()
  853. self.optimizer.zero_grad()
  854. # ema
  855. if self.model_ema is not None:
  856. self.model_ema.update(model)
  857. # Update log
  858. metric_logger.update(**loss_dict_reduced)
  859. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  860. metric_logger.update(grad_norm=grad_norm)
  861. metric_logger.update(size=img_size)
  862. if self.args.debug:
  863. print("For debug mode, we only train 1 iteration")
  864. break
  865. # LR Schedule
  866. if not self.second_stage:
  867. self.lr_scheduler.step()
  868. # Gather the stats from all processes
  869. metric_logger.synchronize_between_processes()
  870. print("Averaged stats:", metric_logger)
  871. def refine_targets(self, targets, min_box_size):
  872. # rescale targets
  873. for tgt in targets:
  874. boxes = tgt["boxes"].clone()
  875. labels = tgt["labels"].clone()
  876. # refine tgt
  877. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  878. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  879. keep = (min_tgt_size >= min_box_size)
  880. tgt["boxes"] = boxes[keep]
  881. tgt["labels"] = labels[keep]
  882. return targets
  883. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  884. """
  885. Deployed for Multi scale trick.
  886. """
  887. if isinstance(stride, int):
  888. max_stride = stride
  889. elif isinstance(stride, list):
  890. max_stride = max(stride)
  891. # During training phase, the shape of input image is square.
  892. old_img_size = images.shape[-1]
  893. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  894. new_img_size = new_img_size // max_stride * max_stride # size
  895. if new_img_size / old_img_size != 1:
  896. # interpolate
  897. images = torch.nn.functional.interpolate(
  898. input=images,
  899. size=new_img_size,
  900. mode='bilinear',
  901. align_corners=False)
  902. # rescale targets
  903. for tgt in targets:
  904. boxes = tgt["boxes"].clone()
  905. labels = tgt["labels"].clone()
  906. boxes = torch.clamp(boxes, 0, old_img_size)
  907. # rescale box
  908. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  909. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  910. # refine tgt
  911. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  912. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  913. keep = (min_tgt_size >= min_box_size)
  914. tgt["boxes"] = boxes[keep]
  915. tgt["labels"] = labels[keep]
  916. return images, targets, new_img_size
  917. def check_second_stage(self):
  918. # set second stage
  919. print('============== Second stage of Training ==============')
  920. self.second_stage = True
  921. # close mosaic augmentation
  922. if self.train_loader.dataset.mosaic_prob > 0.:
  923. print(' - Close < Mosaic Augmentation > ...')
  924. self.train_loader.dataset.mosaic_prob = 0.
  925. self.heavy_eval = True
  926. # close mixup augmentation
  927. if self.train_loader.dataset.mixup_prob > 0.:
  928. print(' - Close < Mixup Augmentation > ...')
  929. self.train_loader.dataset.mixup_prob = 0.
  930. self.heavy_eval = True
  931. # close rotation augmentation
  932. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  933. print(' - Close < degress of rotation > ...')
  934. self.trans_cfg['degrees'] = 0.0
  935. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  936. print(' - Close < shear of rotation >...')
  937. self.trans_cfg['shear'] = 0.0
  938. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  939. print(' - Close < perspective of rotation > ...')
  940. self.trans_cfg['perspective'] = 0.0
  941. # build a new transform for second stage
  942. print(' - Rebuild transforms ...')
  943. self.train_transform, self.trans_cfg = build_transform(
  944. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  945. self.train_loader.dataset.transform = self.train_transform
  946. def check_third_stage(self):
  947. # set third stage
  948. print('============== Third stage of Training ==============')
  949. self.third_stage = True
  950. # close random affine
  951. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  952. print(' - Close < translate of affine > ...')
  953. self.trans_cfg['translate'] = 0.0
  954. if 'scale' in self.trans_cfg.keys():
  955. print(' - Close < scale of affine >...')
  956. self.trans_cfg['scale'] = [1.0, 1.0]
  957. # build a new transform for second stage
  958. print(' - Rebuild transforms ...')
  959. self.train_transform, self.trans_cfg = build_transform(
  960. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  961. self.train_loader.dataset.transform = self.train_transform
  962. ## Real-time DETR Trainer
  963. class RTDetrTrainer(object):
  964. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  965. # ------------------- Basic parameters -------------------
  966. self.args = args
  967. self.epoch = 0
  968. self.best_map = -1.
  969. self.device = device
  970. self.criterion = criterion
  971. self.world_size = world_size
  972. self.grad_accumulate = args.grad_accumulate
  973. self.clip_grad = 0.1
  974. self.heavy_eval = False
  975. self.normalize_bbox = True
  976. # close AMP for RT-DETR
  977. self.args.fp16 = False
  978. # weak augmentatino stage
  979. self.second_stage = False
  980. self.second_stage_epoch = -1
  981. # path to save model
  982. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  983. os.makedirs(self.path_to_save, exist_ok=True)
  984. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  985. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.0001, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  986. self.warmup_dict = {'warmup': 'linear', 'warmup_iters': 2000, 'warmup_factor': 0.00066667}
  987. self.lr_schedule_dict = {'lr_scheduler': 'step', 'lr_epoch': [self.args.max_epoch // 12 * 11]}
  988. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  989. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  990. self.data_cfg = data_cfg
  991. self.model_cfg = model_cfg
  992. self.trans_cfg = trans_cfg
  993. # ---------------------------- Build Transform ----------------------------
  994. self.train_transform, self.trans_cfg = build_transform(
  995. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  996. self.val_transform, _ = build_transform(
  997. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  998. if self.trans_cfg["mosaic_prob"] > 0:
  999. self.second_stage_epoch = 5
  1000. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1001. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1002. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1003. # ---------------------------- Build Evaluator ----------------------------
  1004. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1005. # ---------------------------- Build Grad. Scaler ----------------------------
  1006. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  1007. # ---------------------------- Build Optimizer ----------------------------
  1008. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1009. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1010. # ---------------------------- Build LR Scheduler ----------------------------
  1011. self.wp_lr_scheduler = build_wp_lr_scheduler(self.warmup_dict, self.optimizer_dict['lr0'])
  1012. self.lr_scheduler = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.resume)
  1013. # ---------------------------- Build Model-EMA ----------------------------
  1014. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1015. print('Build ModelEMA ...')
  1016. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1017. else:
  1018. self.model_ema = None
  1019. def train(self, model):
  1020. for epoch in range(self.start_epoch, self.args.max_epoch):
  1021. if self.args.distributed:
  1022. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1023. # check second stage
  1024. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1025. self.check_second_stage()
  1026. # save model of the last mosaic epoch
  1027. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1028. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1029. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1030. torch.save({'model': model.state_dict(),
  1031. 'mAP': round(self.evaluator.map*100, 1),
  1032. 'optimizer': self.optimizer.state_dict(),
  1033. 'epoch': self.epoch,
  1034. 'args': self.args},
  1035. checkpoint_path)
  1036. # train one epoch
  1037. self.epoch = epoch
  1038. self.train_one_epoch(model)
  1039. # eval one epoch
  1040. if self.heavy_eval:
  1041. model_eval = model.module if self.args.distributed else model
  1042. self.eval(model_eval)
  1043. else:
  1044. model_eval = model.module if self.args.distributed else model
  1045. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1046. self.eval(model_eval)
  1047. if self.args.debug:
  1048. print("For debug mode, we only train 1 epoch")
  1049. break
  1050. def eval(self, model):
  1051. # chech model
  1052. model_eval = model if self.model_ema is None else self.model_ema.ema
  1053. if distributed_utils.is_main_process():
  1054. # check evaluator
  1055. if self.evaluator is None:
  1056. print('No evaluator ... save model and go on training.')
  1057. print('Saving state, epoch: {}'.format(self.epoch))
  1058. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1059. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1060. torch.save({'model': model_eval.state_dict(),
  1061. 'mAP': -1.,
  1062. 'optimizer': self.optimizer.state_dict(),
  1063. 'epoch': self.epoch,
  1064. 'args': self.args},
  1065. checkpoint_path)
  1066. else:
  1067. print('eval ...')
  1068. # set eval mode
  1069. model_eval.eval()
  1070. # evaluate
  1071. with torch.no_grad():
  1072. self.evaluator.evaluate(model_eval)
  1073. # save model
  1074. cur_map = self.evaluator.map
  1075. if cur_map > self.best_map:
  1076. # update best-map
  1077. self.best_map = cur_map
  1078. # save model
  1079. print('Saving state, epoch:', self.epoch)
  1080. weight_name = '{}_best.pth'.format(self.args.model)
  1081. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1082. torch.save({'model': model_eval.state_dict(),
  1083. 'mAP': round(self.best_map*100, 1),
  1084. 'optimizer': self.optimizer.state_dict(),
  1085. 'epoch': self.epoch,
  1086. 'args': self.args},
  1087. checkpoint_path)
  1088. # set train mode.
  1089. model_eval.train()
  1090. if self.args.distributed:
  1091. # wait for all processes to synchronize
  1092. dist.barrier()
  1093. def train_one_epoch(self, model):
  1094. metric_logger = MetricLogger(delimiter=" ")
  1095. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1096. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1097. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1098. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1099. epoch_size = len(self.train_loader)
  1100. print_freq = 10
  1101. # basic parameters
  1102. epoch_size = len(self.train_loader)
  1103. img_size = self.args.img_size
  1104. nw = self.warmup_dict['warmup_iters']
  1105. lr_warmup_stage = True
  1106. # Train one epoch
  1107. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1108. ni = iter_i + self.epoch * epoch_size
  1109. # WarmUp
  1110. if ni < nw and lr_warmup_stage:
  1111. self.wp_lr_scheduler(ni, self.optimizer)
  1112. elif ni == nw and lr_warmup_stage:
  1113. print('Warmup stage is over.')
  1114. lr_warmup_stage = False
  1115. self.wp_lr_scheduler.set_lr(self.optimizer, self.optimizer_dict['lr0'], self.optimizer_dict['lr0'])
  1116. # To device
  1117. images = images.to(self.device, non_blocking=True).float()
  1118. for tgt in targets:
  1119. tgt['boxes'] = tgt['boxes'].to(self.device)
  1120. tgt['labels'] = tgt['labels'].to(self.device)
  1121. # Multi scale
  1122. if self.args.multi_scale:
  1123. images, targets, img_size = self.rescale_image_targets(
  1124. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1125. else:
  1126. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1127. # xyxy -> cxcywh
  1128. targets = self.box_xyxy_to_cxcywh(targets)
  1129. # Visualize train targets
  1130. if self.args.vis_tgt:
  1131. targets = self.box_cxcywh_to_xyxy(targets)
  1132. vis_data(images, targets, normalized_bbox=self.normalize_bbox,
  1133. pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1134. targets = self.box_xyxy_to_cxcywh(targets)
  1135. # Inference
  1136. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1137. outputs = model(images, targets)
  1138. loss_dict = self.criterion(outputs, targets)
  1139. losses = sum(loss_dict.values())
  1140. # Grad Accumulate
  1141. if self.grad_accumulate > 1:
  1142. losses /= self.grad_accumulate
  1143. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1144. # Backward
  1145. self.scaler.scale(losses).backward()
  1146. # Optimize
  1147. if ni % self.grad_accumulate == 0:
  1148. grad_norm = None
  1149. if self.clip_grad > 0:
  1150. # unscale gradients
  1151. self.scaler.unscale_(self.optimizer)
  1152. # clip gradients
  1153. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1154. # optimizer.step
  1155. self.scaler.step(self.optimizer)
  1156. self.scaler.update()
  1157. self.optimizer.zero_grad()
  1158. # ema
  1159. if self.model_ema is not None:
  1160. self.model_ema.update(model)
  1161. # Update log
  1162. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  1163. metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
  1164. metric_logger.update(grad_norm=grad_norm)
  1165. metric_logger.update(size=img_size)
  1166. if self.args.debug:
  1167. print("For debug mode, we only train 1 iteration")
  1168. break
  1169. # LR Scheduler
  1170. self.lr_scheduler.step()
  1171. def refine_targets(self, img_size, targets, min_box_size):
  1172. # rescale targets
  1173. for tgt in targets:
  1174. boxes = tgt["boxes"].clone()
  1175. labels = tgt["labels"].clone()
  1176. # refine tgt
  1177. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1178. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1179. keep = (min_tgt_size >= min_box_size)
  1180. if self.normalize_bbox:
  1181. # normalize box
  1182. boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
  1183. boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
  1184. tgt["boxes"] = boxes[keep]
  1185. tgt["labels"] = labels[keep]
  1186. return targets
  1187. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1188. """
  1189. Deployed for Multi scale trick.
  1190. """
  1191. if isinstance(stride, int):
  1192. max_stride = stride
  1193. elif isinstance(stride, list):
  1194. max_stride = max(stride)
  1195. # During training phase, the shape of input image is square.
  1196. old_img_size = images.shape[-1]
  1197. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1198. new_img_size = new_img_size // max_stride * max_stride # size
  1199. if new_img_size / old_img_size != 1:
  1200. # interpolate
  1201. images = torch.nn.functional.interpolate(
  1202. input=images,
  1203. size=new_img_size,
  1204. mode='bilinear',
  1205. align_corners=False)
  1206. # rescale targets
  1207. for tgt in targets:
  1208. boxes = tgt["boxes"].clone()
  1209. labels = tgt["labels"].clone()
  1210. boxes = torch.clamp(boxes, 0, old_img_size)
  1211. # rescale box
  1212. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1213. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1214. # refine tgt
  1215. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1216. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1217. keep = (min_tgt_size >= min_box_size)
  1218. if self.normalize_bbox:
  1219. # normalize box
  1220. boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
  1221. boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
  1222. tgt["boxes"] = boxes[keep]
  1223. tgt["labels"] = labels[keep]
  1224. return images, targets, new_img_size
  1225. def box_xyxy_to_cxcywh(self, targets):
  1226. # rescale targets
  1227. for tgt in targets:
  1228. boxes_xyxy = tgt["boxes"].clone()
  1229. # rescale box
  1230. cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
  1231. bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
  1232. boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
  1233. tgt["boxes"] = boxes_bwbh
  1234. return targets
  1235. def box_cxcywh_to_xyxy(self, targets):
  1236. # rescale targets
  1237. for tgt in targets:
  1238. boxes_cxcywh = tgt["boxes"].clone()
  1239. # rescale box
  1240. x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
  1241. x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
  1242. boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
  1243. tgt["boxes"] = boxes_bwbh
  1244. return targets
  1245. def check_second_stage(self):
  1246. # set second stage
  1247. print('============== Second stage of Training ==============')
  1248. self.second_stage = True
  1249. # close mosaic augmentation
  1250. if self.train_loader.dataset.mosaic_prob > 0.:
  1251. print(' - Close < Mosaic Augmentation > ...')
  1252. self.train_loader.dataset.mosaic_prob = 0.
  1253. self.heavy_eval = True
  1254. # close mixup augmentation
  1255. if self.train_loader.dataset.mixup_prob > 0.:
  1256. print(' - Close < Mixup Augmentation > ...')
  1257. self.train_loader.dataset.mixup_prob = 0.
  1258. self.heavy_eval = True
  1259. # close rotation augmentation
  1260. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1261. print(' - Close < degress of rotation > ...')
  1262. self.trans_cfg['degrees'] = 0.0
  1263. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1264. print(' - Close < shear of rotation >...')
  1265. self.trans_cfg['shear'] = 0.0
  1266. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1267. print(' - Close < perspective of rotation > ...')
  1268. self.trans_cfg['perspective'] = 0.0
  1269. # build a new transform for second stage
  1270. print(' - Rebuild transforms ...')
  1271. self.train_transform, self.trans_cfg = build_transform(
  1272. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1273. self.train_loader.dataset.transform = self.train_transform
  1274. ## Real-time PlainDETR Trainer
  1275. class RTPDetrTrainer(RTDetrTrainer):
  1276. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1277. super().__init__(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1278. # ------------------- Basic parameters -------------------
  1279. ## Reset optimzier hyper-parameters
  1280. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.0001, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  1281. self.warmup_dict = {'warmup': 'linear', 'warmup_iters': 2000, 'warmup_factor': 0.00066667}
  1282. self.lr_schedule_dict = {'lr_scheduler': 'step', 'lr_epoch': [self.args.max_epoch // 12 * 11]}
  1283. self.normalize_bbox = False
  1284. # ---------------------------- Build Optimizer ----------------------------
  1285. print("- Re-build oprimizer -")
  1286. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1287. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1288. # ---------------------------- Build LR Scheduler ----------------------------
  1289. print("- Re-build lr scheduler -")
  1290. self.wp_lr_scheduler = build_wp_lr_scheduler(self.warmup_dict, self.optimizer_dict['lr0'])
  1291. self.lr_scheduler = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.resume)
  1292. def train_one_epoch(self, model):
  1293. metric_logger = MetricLogger(delimiter=" ")
  1294. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1295. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1296. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1297. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1298. epoch_size = len(self.train_loader)
  1299. print_freq = 10
  1300. # basic parameters
  1301. epoch_size = len(self.train_loader)
  1302. img_size = self.args.img_size
  1303. nw = self.warmup_dict['warmup_iters']
  1304. lr_warmup_stage = True
  1305. # Train one epoch
  1306. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1307. ni = iter_i + self.epoch * epoch_size
  1308. # WarmUp
  1309. if ni < nw and lr_warmup_stage:
  1310. self.wp_lr_scheduler(ni, self.optimizer)
  1311. elif ni == nw and lr_warmup_stage:
  1312. print('Warmup stage is over.')
  1313. lr_warmup_stage = False
  1314. self.wp_lr_scheduler.set_lr(self.optimizer, self.optimizer_dict['lr0'], self.optimizer_dict['lr0'])
  1315. # To device
  1316. images = images.to(self.device, non_blocking=True).float()
  1317. for tgt in targets:
  1318. tgt['boxes'] = tgt['boxes'].to(self.device)
  1319. tgt['labels'] = tgt['labels'].to(self.device)
  1320. # Multi scale
  1321. if self.args.multi_scale:
  1322. images, targets, img_size = self.rescale_image_targets(
  1323. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1324. else:
  1325. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1326. # xyxy -> cxcywh
  1327. targets = self.box_xyxy_to_cxcywh(targets)
  1328. # Visualize train targets
  1329. if self.args.vis_tgt:
  1330. targets = self.box_cxcywh_to_xyxy(targets)
  1331. vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1332. targets = self.box_xyxy_to_cxcywh(targets)
  1333. # Inference
  1334. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1335. outputs = model(images)
  1336. # Compute loss
  1337. loss_dict = self.criterion(outputs, targets)
  1338. losses = sum(loss_dict.values())
  1339. # Grad Accumulate
  1340. if self.grad_accumulate > 1:
  1341. losses /= self.grad_accumulate
  1342. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1343. # Backward
  1344. self.scaler.scale(losses).backward()
  1345. # Optimize
  1346. if ni % self.grad_accumulate == 0:
  1347. grad_norm = None
  1348. if self.clip_grad > 0:
  1349. # unscale gradients
  1350. self.scaler.unscale_(self.optimizer)
  1351. # clip gradients
  1352. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1353. # optimizer.step
  1354. self.scaler.step(self.optimizer)
  1355. self.scaler.update()
  1356. self.optimizer.zero_grad()
  1357. # ema
  1358. if self.model_ema is not None:
  1359. self.model_ema.update(model)
  1360. # Update log
  1361. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  1362. metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
  1363. metric_logger.update(grad_norm=grad_norm)
  1364. metric_logger.update(size=img_size)
  1365. if self.args.debug:
  1366. print("For debug mode, we only train 1 iteration")
  1367. break
  1368. # LR Schedule
  1369. self.lr_scheduler.step()
  1370. # Build Trainer
  1371. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1372. # ----------------------- Det trainers -----------------------
  1373. if model_cfg['trainer_type'] == 'yolov8':
  1374. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1375. elif model_cfg['trainer_type'] == 'yolox':
  1376. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1377. elif model_cfg['trainer_type'] == 'rtcdet':
  1378. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1379. elif model_cfg['trainer_type'] == 'rtdetr':
  1380. return RTDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1381. elif model_cfg['trainer_type'] == 'rtpdetr':
  1382. return RTPDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1383. else:
  1384. raise NotImplementedError(model_cfg['trainer_type'])