engine.py 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8-style Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  34. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  35. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  36. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  37. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  38. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  39. self.data_cfg = data_cfg
  40. self.model_cfg = model_cfg
  41. self.trans_cfg = trans_cfg
  42. # ---------------------------- Build Transform ----------------------------
  43. self.train_transform, self.trans_cfg = build_transform(
  44. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  45. self.val_transform, _ = build_transform(
  46. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  47. # ---------------------------- Build Dataset & Dataloader ----------------------------
  48. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  49. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  50. # ---------------------------- Build Evaluator ----------------------------
  51. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  52. # ---------------------------- Build Grad. Scaler ----------------------------
  53. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  54. # ---------------------------- Build Optimizer ----------------------------
  55. accumulate = max(1, round(64 / self.args.batch_size))
  56. print('Grad Accumulate: {}'.format(accumulate))
  57. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  58. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  59. # ---------------------------- Build LR Scheduler ----------------------------
  60. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  61. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  62. if self.args.resume:
  63. self.lr_scheduler.step()
  64. # ---------------------------- Build Model-EMA ----------------------------
  65. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  66. print('Build ModelEMA ...')
  67. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  68. else:
  69. self.model_ema = None
  70. def check_second_stage(self):
  71. # set second stage
  72. print('============== Second stage of Training ==============')
  73. self.second_stage = True
  74. # close mosaic augmentation
  75. if self.train_loader.dataset.mosaic_prob > 0.:
  76. print(' - Close < Mosaic Augmentation > ...')
  77. self.train_loader.dataset.mosaic_prob = 0.
  78. self.heavy_eval = True
  79. # close mixup augmentation
  80. if self.train_loader.dataset.mixup_prob > 0.:
  81. print(' - Close < Mixup Augmentation > ...')
  82. self.train_loader.dataset.mixup_prob = 0.
  83. self.heavy_eval = True
  84. # close rotation augmentation
  85. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  86. print(' - Close < degress of rotation > ...')
  87. self.trans_cfg['degrees'] = 0.0
  88. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  89. print(' - Close < shear of rotation >...')
  90. self.trans_cfg['shear'] = 0.0
  91. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  92. print(' - Close < perspective of rotation > ...')
  93. self.trans_cfg['perspective'] = 0.0
  94. # close random affine
  95. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  96. print(' - Close < translate of affine > ...')
  97. self.trans_cfg['translate'] = 0.0
  98. if 'scale' in self.trans_cfg.keys():
  99. print(' - Close < scale of affine >...')
  100. self.trans_cfg['scale'] = [1.0, 1.0]
  101. # build a new transform for second stage
  102. print(' - Rebuild transforms ...')
  103. self.train_transform, self.trans_cfg = build_transform(
  104. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  105. self.train_loader.dataset.transform = self.train_transform
  106. def train(self, model):
  107. for epoch in range(self.start_epoch, self.args.max_epoch):
  108. if self.args.distributed:
  109. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  110. # check second stage
  111. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  112. self.check_second_stage()
  113. # train one epoch
  114. self.epoch = epoch
  115. self.train_one_epoch(model)
  116. # eval one epoch
  117. if self.heavy_eval:
  118. model_eval = model.module if self.args.distributed else model
  119. self.eval(model_eval)
  120. else:
  121. model_eval = model.module if self.args.distributed else model
  122. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  123. self.eval(model_eval)
  124. def eval(self, model):
  125. # chech model
  126. model_eval = model if self.model_ema is None else self.model_ema.ema
  127. # path to save model
  128. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  129. os.makedirs(path_to_save, exist_ok=True)
  130. if distributed_utils.is_main_process():
  131. # check evaluator
  132. if self.evaluator is None:
  133. print('No evaluator ... save model and go on training.')
  134. print('Saving state, epoch: {}'.format(self.epoch + 1))
  135. weight_name = '{}_no_eval.pth'.format(self.args.model)
  136. checkpoint_path = os.path.join(path_to_save, weight_name)
  137. torch.save({'model': model_eval.state_dict(),
  138. 'mAP': -1.,
  139. 'optimizer': self.optimizer.state_dict(),
  140. 'epoch': self.epoch,
  141. 'args': self.args},
  142. checkpoint_path)
  143. else:
  144. print('eval ...')
  145. # set eval mode
  146. model_eval.trainable = False
  147. model_eval.eval()
  148. # evaluate
  149. with torch.no_grad():
  150. self.evaluator.evaluate(model_eval)
  151. # save model
  152. cur_map = self.evaluator.map
  153. if cur_map > self.best_map:
  154. # update best-map
  155. self.best_map = cur_map
  156. # save model
  157. print('Saving state, epoch:', self.epoch + 1)
  158. weight_name = '{}_best.pth'.format(self.args.model)
  159. checkpoint_path = os.path.join(path_to_save, weight_name)
  160. torch.save({'model': model_eval.state_dict(),
  161. 'mAP': round(self.best_map*100, 1),
  162. 'optimizer': self.optimizer.state_dict(),
  163. 'epoch': self.epoch,
  164. 'args': self.args},
  165. checkpoint_path)
  166. # set train mode.
  167. model_eval.trainable = True
  168. model_eval.train()
  169. if self.args.distributed:
  170. # wait for all processes to synchronize
  171. dist.barrier()
  172. def train_one_epoch(self, model):
  173. # basic parameters
  174. epoch_size = len(self.train_loader)
  175. img_size = self.args.img_size
  176. t0 = time.time()
  177. nw = epoch_size * self.args.wp_epoch
  178. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  179. # train one epoch
  180. for iter_i, (images, targets) in enumerate(self.train_loader):
  181. ni = iter_i + self.epoch * epoch_size
  182. # Warmup
  183. if ni <= nw:
  184. xi = [0, nw] # x interp
  185. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  186. for j, x in enumerate(self.optimizer.param_groups):
  187. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  188. x['lr'] = np.interp(
  189. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  190. if 'momentum' in x:
  191. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  192. # to device
  193. images = images.to(self.device, non_blocking=True).float() / 255.
  194. # Multi scale
  195. if self.args.multi_scale:
  196. images, targets, img_size = self.rescale_image_targets(
  197. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  198. else:
  199. targets = self.refine_targets(targets, self.args.min_box_size)
  200. # visualize train targets
  201. if self.args.vis_tgt:
  202. vis_data(images*255, targets)
  203. # inference
  204. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  205. outputs = model(images)
  206. # loss
  207. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  208. losses = loss_dict['losses']
  209. losses *= images.shape[0] # loss * bs
  210. # reduce
  211. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  212. # gradient averaged between devices in DDP mode
  213. losses *= distributed_utils.get_world_size()
  214. # backward
  215. self.scaler.scale(losses).backward()
  216. # Optimize
  217. if ni - self.last_opt_step >= accumulate:
  218. if self.clip_grad > 0:
  219. # unscale gradients
  220. self.scaler.unscale_(self.optimizer)
  221. # clip gradients
  222. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  223. # optimizer.step
  224. self.scaler.step(self.optimizer)
  225. self.scaler.update()
  226. self.optimizer.zero_grad()
  227. # ema
  228. if self.model_ema is not None:
  229. self.model_ema.update(model)
  230. self.last_opt_step = ni
  231. # display
  232. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  233. t1 = time.time()
  234. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  235. # basic infor
  236. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  237. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  238. log += '[lr: {:.6f}]'.format(cur_lr[2])
  239. # loss infor
  240. for k in loss_dict_reduced.keys():
  241. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  242. # other infor
  243. log += '[time: {:.2f}]'.format(t1 - t0)
  244. log += '[size: {}]'.format(img_size)
  245. # print log infor
  246. print(log, flush=True)
  247. t0 = time.time()
  248. self.lr_scheduler.step()
  249. def refine_targets(self, targets, min_box_size):
  250. # rescale targets
  251. for tgt in targets:
  252. boxes = tgt["boxes"].clone()
  253. labels = tgt["labels"].clone()
  254. # refine tgt
  255. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  256. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  257. keep = (min_tgt_size >= min_box_size)
  258. tgt["boxes"] = boxes[keep]
  259. tgt["labels"] = labels[keep]
  260. return targets
  261. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  262. """
  263. Deployed for Multi scale trick.
  264. """
  265. if isinstance(stride, int):
  266. max_stride = stride
  267. elif isinstance(stride, list):
  268. max_stride = max(stride)
  269. # During training phase, the shape of input image is square.
  270. old_img_size = images.shape[-1]
  271. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  272. new_img_size = new_img_size // max_stride * max_stride # size
  273. if new_img_size / old_img_size != 1:
  274. # interpolate
  275. images = torch.nn.functional.interpolate(
  276. input=images,
  277. size=new_img_size,
  278. mode='bilinear',
  279. align_corners=False)
  280. # rescale targets
  281. for tgt in targets:
  282. boxes = tgt["boxes"].clone()
  283. labels = tgt["labels"].clone()
  284. boxes = torch.clamp(boxes, 0, old_img_size)
  285. # rescale box
  286. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  287. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  288. # refine tgt
  289. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  290. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  291. keep = (min_tgt_size >= min_box_size)
  292. tgt["boxes"] = boxes[keep]
  293. tgt["labels"] = labels[keep]
  294. return images, targets, new_img_size
  295. # YOLOX-syle Trainer
  296. class YoloxTrainer(object):
  297. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  298. # ------------------- basic parameters -------------------
  299. self.args = args
  300. self.epoch = 0
  301. self.best_map = -1.
  302. self.device = device
  303. self.criterion = criterion
  304. self.world_size = world_size
  305. self.grad_accumulate = args.grad_accumulate
  306. self.no_aug_epoch = args.no_aug_epoch
  307. self.heavy_eval = False
  308. self.second_stage = False
  309. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  310. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  311. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  312. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  313. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  314. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  315. self.data_cfg = data_cfg
  316. self.model_cfg = model_cfg
  317. self.trans_cfg = trans_cfg
  318. # ---------------------------- Build Transform ----------------------------
  319. self.train_transform, self.trans_cfg = build_transform(
  320. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  321. self.val_transform, _ = build_transform(
  322. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  323. # ---------------------------- Build Dataset & Dataloader ----------------------------
  324. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  325. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  326. # ---------------------------- Build Evaluator ----------------------------
  327. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  328. # ---------------------------- Build Grad. Scaler ----------------------------
  329. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  330. # ---------------------------- Build Optimizer ----------------------------
  331. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  332. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  333. # ---------------------------- Build LR Scheduler ----------------------------
  334. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  335. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  336. if self.args.resume:
  337. self.lr_scheduler.step()
  338. # ---------------------------- Build Model-EMA ----------------------------
  339. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  340. print('Build ModelEMA ...')
  341. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  342. else:
  343. self.model_ema = None
  344. def train(self, model):
  345. for epoch in range(self.start_epoch, self.args.max_epoch):
  346. if self.args.distributed:
  347. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  348. # check second stage
  349. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  350. self.check_second_stage()
  351. # train one epoch
  352. self.epoch = epoch
  353. self.train_one_epoch(model)
  354. # eval one epoch
  355. if self.heavy_eval:
  356. model_eval = model.module if self.args.distributed else model
  357. self.eval(model_eval)
  358. else:
  359. model_eval = model.module if self.args.distributed else model
  360. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  361. self.eval(model_eval)
  362. def eval(self, model):
  363. # chech model
  364. model_eval = model if self.model_ema is None else self.model_ema.ema
  365. # path to save model
  366. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  367. os.makedirs(path_to_save, exist_ok=True)
  368. if distributed_utils.is_main_process():
  369. # check evaluator
  370. if self.evaluator is None:
  371. print('No evaluator ... save model and go on training.')
  372. print('Saving state, epoch: {}'.format(self.epoch + 1))
  373. weight_name = '{}_no_eval.pth'.format(self.args.model)
  374. checkpoint_path = os.path.join(path_to_save, weight_name)
  375. torch.save({'model': model_eval.state_dict(),
  376. 'mAP': -1.,
  377. 'optimizer': self.optimizer.state_dict(),
  378. 'epoch': self.epoch,
  379. 'args': self.args},
  380. checkpoint_path)
  381. else:
  382. print('eval ...')
  383. # set eval mode
  384. model_eval.trainable = False
  385. model_eval.eval()
  386. # evaluate
  387. with torch.no_grad():
  388. self.evaluator.evaluate(model_eval)
  389. # save model
  390. cur_map = self.evaluator.map
  391. if cur_map > self.best_map:
  392. # update best-map
  393. self.best_map = cur_map
  394. # save model
  395. print('Saving state, epoch:', self.epoch + 1)
  396. weight_name = '{}_best.pth'.format(self.args.model)
  397. checkpoint_path = os.path.join(path_to_save, weight_name)
  398. torch.save({'model': model_eval.state_dict(),
  399. 'mAP': round(self.best_map*100, 1),
  400. 'optimizer': self.optimizer.state_dict(),
  401. 'epoch': self.epoch,
  402. 'args': self.args},
  403. checkpoint_path)
  404. # set train mode.
  405. model_eval.trainable = True
  406. model_eval.train()
  407. if self.args.distributed:
  408. # wait for all processes to synchronize
  409. dist.barrier()
  410. def train_one_epoch(self, model):
  411. # basic parameters
  412. epoch_size = len(self.train_loader)
  413. img_size = self.args.img_size
  414. t0 = time.time()
  415. nw = epoch_size * self.args.wp_epoch
  416. # Train one epoch
  417. for iter_i, (images, targets) in enumerate(self.train_loader):
  418. ni = iter_i + self.epoch * epoch_size
  419. # Warmup
  420. if ni <= nw:
  421. xi = [0, nw] # x interp
  422. for j, x in enumerate(self.optimizer.param_groups):
  423. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  424. x['lr'] = np.interp(
  425. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  426. if 'momentum' in x:
  427. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  428. # To device
  429. images = images.to(self.device, non_blocking=True).float() / 255.
  430. # Multi scale
  431. if self.args.multi_scale and ni % 10 == 0:
  432. images, targets, img_size = self.rescale_image_targets(
  433. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  434. else:
  435. targets = self.refine_targets(targets, self.args.min_box_size)
  436. # Visualize train targets
  437. if self.args.vis_tgt:
  438. vis_data(images*255, targets)
  439. # Inference
  440. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  441. outputs = model(images)
  442. # Compute loss
  443. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  444. losses = loss_dict['losses']
  445. # Grad Accu
  446. if self.grad_accumulate > 1:
  447. losses /= self.grad_accumulate
  448. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  449. # Backward
  450. self.scaler.scale(losses).backward()
  451. # Optimize
  452. if ni % self.grad_accumulate == 0:
  453. self.scaler.step(self.optimizer)
  454. self.scaler.update()
  455. self.optimizer.zero_grad()
  456. # ema
  457. if self.model_ema is not None:
  458. self.model_ema.update(model)
  459. # Logs
  460. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  461. t1 = time.time()
  462. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  463. # basic infor
  464. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  465. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  466. log += '[lr: {:.6f}]'.format(cur_lr[2])
  467. # loss infor
  468. for k in loss_dict_reduced.keys():
  469. loss_val = loss_dict_reduced[k]
  470. if k == 'losses':
  471. loss_val *= self.grad_accumulate
  472. log += '[{}: {:.2f}]'.format(k, loss_val)
  473. # other infor
  474. log += '[time: {:.2f}]'.format(t1 - t0)
  475. log += '[size: {}]'.format(img_size)
  476. # print log infor
  477. print(log, flush=True)
  478. t0 = time.time()
  479. # LR Schedule
  480. if not self.second_stage:
  481. self.lr_scheduler.step()
  482. def check_second_stage(self):
  483. # set second stage
  484. print('============== Second stage of Training ==============')
  485. self.second_stage = True
  486. # close mosaic augmentation
  487. if self.train_loader.dataset.mosaic_prob > 0.:
  488. print(' - Close < Mosaic Augmentation > ...')
  489. self.train_loader.dataset.mosaic_prob = 0.
  490. self.heavy_eval = True
  491. # close mixup augmentation
  492. if self.train_loader.dataset.mixup_prob > 0.:
  493. print(' - Close < Mixup Augmentation > ...')
  494. self.train_loader.dataset.mixup_prob = 0.
  495. self.heavy_eval = True
  496. # close rotation augmentation
  497. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  498. print(' - Close < degress of rotation > ...')
  499. self.trans_cfg['degrees'] = 0.0
  500. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  501. print(' - Close < shear of rotation >...')
  502. self.trans_cfg['shear'] = 0.0
  503. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  504. print(' - Close < perspective of rotation > ...')
  505. self.trans_cfg['perspective'] = 0.0
  506. # close random affine
  507. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  508. print(' - Close < translate of affine > ...')
  509. self.trans_cfg['translate'] = 0.0
  510. if 'scale' in self.trans_cfg.keys():
  511. print(' - Close < scale of affine >...')
  512. self.trans_cfg['scale'] = [1.0, 1.0]
  513. # build a new transform for second stage
  514. print(' - Rebuild transforms ...')
  515. self.train_transform, self.trans_cfg = build_transform(
  516. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  517. self.train_loader.dataset.transform = self.train_transform
  518. def refine_targets(self, targets, min_box_size):
  519. # rescale targets
  520. for tgt in targets:
  521. boxes = tgt["boxes"].clone()
  522. labels = tgt["labels"].clone()
  523. # refine tgt
  524. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  525. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  526. keep = (min_tgt_size >= min_box_size)
  527. tgt["boxes"] = boxes[keep]
  528. tgt["labels"] = labels[keep]
  529. return targets
  530. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  531. """
  532. Deployed for Multi scale trick.
  533. """
  534. if isinstance(stride, int):
  535. max_stride = stride
  536. elif isinstance(stride, list):
  537. max_stride = max(stride)
  538. # During training phase, the shape of input image is square.
  539. old_img_size = images.shape[-1]
  540. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  541. new_img_size = new_img_size // max_stride * max_stride # size
  542. if new_img_size / old_img_size != 1:
  543. # interpolate
  544. images = torch.nn.functional.interpolate(
  545. input=images,
  546. size=new_img_size,
  547. mode='bilinear',
  548. align_corners=False)
  549. # rescale targets
  550. for tgt in targets:
  551. boxes = tgt["boxes"].clone()
  552. labels = tgt["labels"].clone()
  553. boxes = torch.clamp(boxes, 0, old_img_size)
  554. # rescale box
  555. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  556. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  557. # refine tgt
  558. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  559. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  560. keep = (min_tgt_size >= min_box_size)
  561. tgt["boxes"] = boxes[keep]
  562. tgt["labels"] = labels[keep]
  563. return images, targets, new_img_size
  564. # RTMDet-syle Trainer
  565. class RTMTrainer(object):
  566. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  567. # ------------------- basic parameters -------------------
  568. self.args = args
  569. self.epoch = 0
  570. self.best_map = -1.
  571. self.device = device
  572. self.criterion = criterion
  573. self.world_size = world_size
  574. self.grad_accumulate = args.grad_accumulate
  575. self.no_aug_epoch = args.no_aug_epoch
  576. self.clip_grad = 35
  577. self.heavy_eval = False
  578. self.second_stage = False
  579. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  580. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  581. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  582. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  583. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  584. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  585. self.data_cfg = data_cfg
  586. self.model_cfg = model_cfg
  587. self.trans_cfg = trans_cfg
  588. # ---------------------------- Build Transform ----------------------------
  589. self.train_transform, self.trans_cfg = build_transform(
  590. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  591. self.val_transform, _ = build_transform(
  592. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  593. # ---------------------------- Build Dataset & Dataloader ----------------------------
  594. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  595. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  596. # ---------------------------- Build Evaluator ----------------------------
  597. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  598. # ---------------------------- Build Grad. Scaler ----------------------------
  599. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  600. # ---------------------------- Build Optimizer ----------------------------
  601. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  602. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  603. # ---------------------------- Build LR Scheduler ----------------------------
  604. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  605. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  606. if self.args.resume:
  607. self.lr_scheduler.step()
  608. # ---------------------------- Build Model-EMA ----------------------------
  609. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  610. print('Build ModelEMA ...')
  611. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  612. else:
  613. self.model_ema = None
  614. def train(self, model):
  615. for epoch in range(self.start_epoch, self.args.max_epoch):
  616. if self.args.distributed:
  617. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  618. # check second stage
  619. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  620. self.check_second_stage()
  621. # train one epoch
  622. self.epoch = epoch
  623. self.train_one_epoch(model)
  624. # eval one epoch
  625. if self.heavy_eval:
  626. model_eval = model.module if self.args.distributed else model
  627. self.eval(model_eval)
  628. else:
  629. model_eval = model.module if self.args.distributed else model
  630. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  631. self.eval(model_eval)
  632. def eval(self, model):
  633. # chech model
  634. model_eval = model if self.model_ema is None else self.model_ema.ema
  635. # path to save model
  636. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  637. os.makedirs(path_to_save, exist_ok=True)
  638. if distributed_utils.is_main_process():
  639. # check evaluator
  640. if self.evaluator is None:
  641. print('No evaluator ... save model and go on training.')
  642. print('Saving state, epoch: {}'.format(self.epoch + 1))
  643. weight_name = '{}_no_eval.pth'.format(self.args.model)
  644. checkpoint_path = os.path.join(path_to_save, weight_name)
  645. torch.save({'model': model_eval.state_dict(),
  646. 'mAP': -1.,
  647. 'optimizer': self.optimizer.state_dict(),
  648. 'epoch': self.epoch,
  649. 'args': self.args},
  650. checkpoint_path)
  651. else:
  652. print('eval ...')
  653. # set eval mode
  654. model_eval.trainable = False
  655. model_eval.eval()
  656. # evaluate
  657. with torch.no_grad():
  658. self.evaluator.evaluate(model_eval)
  659. # save model
  660. cur_map = self.evaluator.map
  661. if cur_map > self.best_map:
  662. # update best-map
  663. self.best_map = cur_map
  664. # save model
  665. print('Saving state, epoch:', self.epoch + 1)
  666. weight_name = '{}_best.pth'.format(self.args.model)
  667. checkpoint_path = os.path.join(path_to_save, weight_name)
  668. torch.save({'model': model_eval.state_dict(),
  669. 'mAP': round(self.best_map*100, 1),
  670. 'optimizer': self.optimizer.state_dict(),
  671. 'epoch': self.epoch,
  672. 'args': self.args},
  673. checkpoint_path)
  674. # set train mode.
  675. model_eval.trainable = True
  676. model_eval.train()
  677. if self.args.distributed:
  678. # wait for all processes to synchronize
  679. dist.barrier()
  680. def train_one_epoch(self, model):
  681. # basic parameters
  682. epoch_size = len(self.train_loader)
  683. img_size = self.args.img_size
  684. t0 = time.time()
  685. nw = epoch_size * self.args.wp_epoch
  686. # Train one epoch
  687. for iter_i, (images, targets) in enumerate(self.train_loader):
  688. ni = iter_i + self.epoch * epoch_size
  689. # Warmup
  690. if ni <= nw:
  691. xi = [0, nw] # x interp
  692. for j, x in enumerate(self.optimizer.param_groups):
  693. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  694. x['lr'] = np.interp(
  695. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  696. if 'momentum' in x:
  697. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  698. # To device
  699. images = images.to(self.device, non_blocking=True).float() / 255.
  700. # Multi scale
  701. if self.args.multi_scale:
  702. images, targets, img_size = self.rescale_image_targets(
  703. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  704. else:
  705. targets = self.refine_targets(targets, self.args.min_box_size)
  706. # Visualize train targets
  707. if self.args.vis_tgt:
  708. vis_data(images*255, targets)
  709. # Inference
  710. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  711. outputs = model(images)
  712. # Compute loss
  713. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  714. losses = loss_dict['losses']
  715. # Grad Accumulate
  716. if self.grad_accumulate > 1:
  717. losses /= self.grad_accumulate
  718. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  719. # Backward
  720. self.scaler.scale(losses).backward()
  721. # Optimize
  722. if ni % self.grad_accumulate == 0:
  723. if self.clip_grad > 0:
  724. # unscale gradients
  725. self.scaler.unscale_(self.optimizer)
  726. # clip gradients
  727. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  728. # optimizer.step
  729. self.scaler.step(self.optimizer)
  730. self.scaler.update()
  731. self.optimizer.zero_grad()
  732. # ema
  733. if self.model_ema is not None:
  734. self.model_ema.update(model)
  735. # Logs
  736. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  737. t1 = time.time()
  738. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  739. # basic infor
  740. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  741. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  742. log += '[lr: {:.6f}]'.format(cur_lr[2])
  743. # loss infor
  744. for k in loss_dict_reduced.keys():
  745. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  746. # other infor
  747. log += '[time: {:.2f}]'.format(t1 - t0)
  748. log += '[size: {}]'.format(img_size)
  749. # print log infor
  750. print(log, flush=True)
  751. t0 = time.time()
  752. # LR Schedule
  753. if not self.second_stage:
  754. self.lr_scheduler.step()
  755. def check_second_stage(self):
  756. # set second stage
  757. print('============== Second stage of Training ==============')
  758. self.second_stage = True
  759. # close mosaic augmentation
  760. if self.train_loader.dataset.mosaic_prob > 0.:
  761. print(' - Close < Mosaic Augmentation > ...')
  762. self.train_loader.dataset.mosaic_prob = 0.
  763. self.heavy_eval = True
  764. # close mixup augmentation
  765. if self.train_loader.dataset.mixup_prob > 0.:
  766. print(' - Close < Mixup Augmentation > ...')
  767. self.train_loader.dataset.mixup_prob = 0.
  768. self.heavy_eval = True
  769. # close rotation augmentation
  770. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  771. print(' - Close < degress of rotation > ...')
  772. self.trans_cfg['degrees'] = 0.0
  773. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  774. print(' - Close < shear of rotation >...')
  775. self.trans_cfg['shear'] = 0.0
  776. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  777. print(' - Close < perspective of rotation > ...')
  778. self.trans_cfg['perspective'] = 0.0
  779. # build a new transform for second stage
  780. print(' - Rebuild transforms ...')
  781. self.train_transform, self.trans_cfg = build_transform(
  782. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  783. self.train_loader.dataset.transform = self.train_transform
  784. def refine_targets(self, targets, min_box_size):
  785. # rescale targets
  786. for tgt in targets:
  787. boxes = tgt["boxes"].clone()
  788. labels = tgt["labels"].clone()
  789. # refine tgt
  790. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  791. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  792. keep = (min_tgt_size >= min_box_size)
  793. tgt["boxes"] = boxes[keep]
  794. tgt["labels"] = labels[keep]
  795. return targets
  796. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  797. """
  798. Deployed for Multi scale trick.
  799. """
  800. if isinstance(stride, int):
  801. max_stride = stride
  802. elif isinstance(stride, list):
  803. max_stride = max(stride)
  804. # During training phase, the shape of input image is square.
  805. old_img_size = images.shape[-1]
  806. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  807. new_img_size = new_img_size // max_stride * max_stride # size
  808. if new_img_size / old_img_size != 1:
  809. # interpolate
  810. images = torch.nn.functional.interpolate(
  811. input=images,
  812. size=new_img_size,
  813. mode='bilinear',
  814. align_corners=False)
  815. # rescale targets
  816. for tgt in targets:
  817. boxes = tgt["boxes"].clone()
  818. labels = tgt["labels"].clone()
  819. boxes = torch.clamp(boxes, 0, old_img_size)
  820. # rescale box
  821. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  822. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  823. # refine tgt
  824. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  825. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  826. keep = (min_tgt_size >= min_box_size)
  827. tgt["boxes"] = boxes[keep]
  828. tgt["labels"] = labels[keep]
  829. return images, targets, new_img_size
  830. # Trainer for DETR
  831. class DetrTrainer(object):
  832. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  833. # ------------------- basic parameters -------------------
  834. self.args = args
  835. self.epoch = 0
  836. self.best_map = -1.
  837. self.last_opt_step = 0
  838. self.no_aug_epoch = args.no_aug_epoch
  839. self.clip_grad = -1
  840. self.device = device
  841. self.criterion = criterion
  842. self.world_size = world_size
  843. self.second_stage = False
  844. self.heavy_eval = False
  845. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
  846. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  847. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  848. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  849. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  850. self.data_cfg = data_cfg
  851. self.model_cfg = model_cfg
  852. self.trans_cfg = trans_cfg
  853. # ---------------------------- Build Transform ----------------------------
  854. self.train_transform, self.trans_cfg = build_transform(
  855. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  856. self.val_transform, _ = build_transform(
  857. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  858. # ---------------------------- Build Dataset & Dataloader ----------------------------
  859. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  860. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  861. # ---------------------------- Build Evaluator ----------------------------
  862. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  863. # ---------------------------- Build Grad. Scaler ----------------------------
  864. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  865. # ---------------------------- Build Optimizer ----------------------------
  866. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  867. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  868. # ---------------------------- Build LR Scheduler ----------------------------
  869. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  870. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  871. if self.args.resume:
  872. self.lr_scheduler.step()
  873. # ---------------------------- Build Model-EMA ----------------------------
  874. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  875. print('Build ModelEMA ...')
  876. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  877. else:
  878. self.model_ema = None
  879. def check_second_stage(self):
  880. # set second stage
  881. print('============== Second stage of Training ==============')
  882. self.second_stage = True
  883. # close mosaic augmentation
  884. if self.train_loader.dataset.mosaic_prob > 0.:
  885. print(' - Close < Mosaic Augmentation > ...')
  886. self.train_loader.dataset.mosaic_prob = 0.
  887. self.heavy_eval = True
  888. # close mixup augmentation
  889. if self.train_loader.dataset.mixup_prob > 0.:
  890. print(' - Close < Mixup Augmentation > ...')
  891. self.train_loader.dataset.mixup_prob = 0.
  892. self.heavy_eval = True
  893. # close rotation augmentation
  894. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  895. print(' - Close < degress of rotation > ...')
  896. self.trans_cfg['degrees'] = 0.0
  897. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  898. print(' - Close < shear of rotation >...')
  899. self.trans_cfg['shear'] = 0.0
  900. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  901. print(' - Close < perspective of rotation > ...')
  902. self.trans_cfg['perspective'] = 0.0
  903. # build a new transform for second stage
  904. print(' - Rebuild transforms ...')
  905. self.train_transform, self.trans_cfg = build_transform(
  906. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  907. self.train_loader.dataset.transform = self.train_transform
  908. def train(self, model):
  909. for epoch in range(self.start_epoch, self.args.max_epoch):
  910. if self.args.distributed:
  911. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  912. # check second stage
  913. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  914. self.check_second_stage()
  915. # train one epoch
  916. self.epoch = epoch
  917. self.train_one_epoch(model)
  918. # eval one epoch
  919. if self.heavy_eval:
  920. model_eval = model.module if self.args.distributed else model
  921. self.eval(model_eval)
  922. else:
  923. model_eval = model.module if self.args.distributed else model
  924. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  925. self.eval(model_eval)
  926. def eval(self, model):
  927. # chech model
  928. model_eval = model if self.model_ema is None else self.model_ema.ema
  929. # path to save model
  930. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  931. os.makedirs(path_to_save, exist_ok=True)
  932. if distributed_utils.is_main_process():
  933. # check evaluator
  934. if self.evaluator is None:
  935. print('No evaluator ... save model and go on training.')
  936. print('Saving state, epoch: {}'.format(self.epoch + 1))
  937. weight_name = '{}_no_eval.pth'.format(self.args.model)
  938. checkpoint_path = os.path.join(path_to_save, weight_name)
  939. torch.save({'model': model_eval.state_dict(),
  940. 'mAP': -1.,
  941. 'optimizer': self.optimizer.state_dict(),
  942. 'epoch': self.epoch,
  943. 'args': self.args},
  944. checkpoint_path)
  945. else:
  946. print('eval ...')
  947. # set eval mode
  948. model_eval.trainable = False
  949. model_eval.eval()
  950. # evaluate
  951. with torch.no_grad():
  952. self.evaluator.evaluate(model_eval)
  953. # save model
  954. cur_map = self.evaluator.map
  955. if cur_map > self.best_map:
  956. # update best-map
  957. self.best_map = cur_map
  958. # save model
  959. print('Saving state, epoch:', self.epoch + 1)
  960. weight_name = '{}_best.pth'.format(self.args.model)
  961. checkpoint_path = os.path.join(path_to_save, weight_name)
  962. torch.save({'model': model_eval.state_dict(),
  963. 'mAP': round(self.best_map*100, 1),
  964. 'optimizer': self.optimizer.state_dict(),
  965. 'epoch': self.epoch,
  966. 'args': self.args},
  967. checkpoint_path)
  968. # set train mode.
  969. model_eval.trainable = True
  970. model_eval.train()
  971. if self.args.distributed:
  972. # wait for all processes to synchronize
  973. dist.barrier()
  974. def train_one_epoch(self, model):
  975. # basic parameters
  976. epoch_size = len(self.train_loader)
  977. img_size = self.args.img_size
  978. t0 = time.time()
  979. nw = epoch_size * self.args.wp_epoch
  980. # train one epoch
  981. for iter_i, (images, targets) in enumerate(self.train_loader):
  982. ni = iter_i + self.epoch * epoch_size
  983. # Warmup
  984. if ni <= nw:
  985. xi = [0, nw] # x interp
  986. for j, x in enumerate(self.optimizer.param_groups):
  987. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  988. x['lr'] = np.interp(
  989. ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  990. if 'momentum' in x:
  991. x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
  992. # To device
  993. images = images.to(self.device, non_blocking=True).float() / 255.
  994. # Multi scale
  995. if self.args.multi_scale:
  996. images, targets, img_size = self.rescale_image_targets(
  997. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  998. else:
  999. targets = self.refine_targets(targets, self.args.min_box_size, img_size)
  1000. # Visualize targets
  1001. if self.args.vis_tgt:
  1002. vis_data(images*255, targets)
  1003. # Inference
  1004. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1005. outputs = model(images)
  1006. # Compute loss
  1007. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  1008. losses = loss_dict['losses']
  1009. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1010. # Backward
  1011. self.scaler.scale(losses).backward()
  1012. # Optimize
  1013. if self.clip_grad > 0:
  1014. # unscale gradients
  1015. self.scaler.unscale_(self.optimizer)
  1016. # clip gradients
  1017. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1018. self.scaler.step(self.optimizer)
  1019. self.scaler.update()
  1020. self.optimizer.zero_grad()
  1021. # Model EMA
  1022. if self.model_ema is not None:
  1023. self.model_ema.update(model)
  1024. self.last_opt_step = ni
  1025. # Log
  1026. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1027. t1 = time.time()
  1028. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1029. # basic infor
  1030. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1031. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1032. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1033. # loss infor
  1034. for k in loss_dict_reduced.keys():
  1035. if self.args.vis_aux_loss:
  1036. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1037. else:
  1038. if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
  1039. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1040. # other infor
  1041. log += '[time: {:.2f}]'.format(t1 - t0)
  1042. log += '[size: {}]'.format(img_size)
  1043. # print log infor
  1044. print(log, flush=True)
  1045. t0 = time.time()
  1046. # LR Scheduler
  1047. self.lr_scheduler.step()
  1048. def refine_targets(self, targets, min_box_size, img_size):
  1049. # rescale targets
  1050. for tgt in targets:
  1051. boxes = tgt["boxes"]
  1052. labels = tgt["labels"]
  1053. # refine tgt
  1054. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1055. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1056. keep = (min_tgt_size >= min_box_size)
  1057. # xyxy -> cxcywh
  1058. new_boxes = torch.zeros_like(boxes)
  1059. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1060. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1061. # normalize
  1062. new_boxes /= img_size
  1063. del boxes
  1064. tgt["boxes"] = new_boxes[keep]
  1065. tgt["labels"] = labels[keep]
  1066. return targets
  1067. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1068. """
  1069. Deployed for Multi scale trick.
  1070. """
  1071. if isinstance(stride, int):
  1072. max_stride = stride
  1073. elif isinstance(stride, list):
  1074. max_stride = max(stride)
  1075. # During training phase, the shape of input image is square.
  1076. old_img_size = images.shape[-1]
  1077. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1078. new_img_size = new_img_size // max_stride * max_stride # size
  1079. if new_img_size / old_img_size != 1:
  1080. # interpolate
  1081. images = torch.nn.functional.interpolate(
  1082. input=images,
  1083. size=new_img_size,
  1084. mode='bilinear',
  1085. align_corners=False)
  1086. # rescale targets
  1087. for tgt in targets:
  1088. boxes = tgt["boxes"].clone()
  1089. labels = tgt["labels"].clone()
  1090. boxes = torch.clamp(boxes, 0, old_img_size)
  1091. # rescale box
  1092. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1093. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1094. # refine tgt
  1095. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1096. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1097. keep = (min_tgt_size >= min_box_size)
  1098. # xyxy -> cxcywh
  1099. new_boxes = torch.zeros_like(boxes)
  1100. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1101. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1102. # normalize
  1103. new_boxes /= new_img_size
  1104. del boxes
  1105. tgt["boxes"] = new_boxes[keep]
  1106. tgt["labels"] = labels[keep]
  1107. return images, targets, new_img_size
  1108. # Build Trainer
  1109. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1110. if model_cfg['trainer_type'] == 'yolov8':
  1111. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1112. elif model_cfg['trainer_type'] == 'yolox':
  1113. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1114. elif model_cfg['trainer_type'] == 'rtmdet':
  1115. return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1116. elif model_cfg['trainer_type'] == 'detr':
  1117. return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1118. else:
  1119. raise NotImplementedError