lr_scheduler.py 901 B

123456789101112131415161718192021222324252627
  1. import math
  2. import torch
  3. def build_lr_scheduler(args, cfg, optimizer, max_epochs):
  4. """Build learning rate scheduler from cfg file."""
  5. print('==============================')
  6. print('Lr Scheduler: {}'.format(cfg['scheduler']))
  7. if cfg['scheduler'] == 'cosine':
  8. lf = lambda x: ((1 - math.cos(x * math.pi / max_epochs)) / 2) * (cfg['lrf'] - 1) + 1
  9. scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  10. elif cfg['scheduler'] == 'linear':
  11. lf = lambda x: (1 - x / max_epochs) * (1.0 - cfg['lrf']) + cfg['lrf']
  12. scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  13. elif cfg['scheduler'] == 'step':
  14. scheduler = torch.optim.lr_scheduler.MultiStepLR(
  15. optimizer, milestones=args.step_epoch, gamma=0.1)
  16. else:
  17. print('unknown lr scheduler.')
  18. exit(0)
  19. return scheduler