loss.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import get_ious
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. from .matcher import AlignedSimOTA
  7. class Criterion(object):
  8. def __init__(self, args, cfg, device, num_classes=80):
  9. self.args = args
  10. self.cfg = cfg
  11. self.device = device
  12. self.num_classes = num_classes
  13. self.max_epoch = args.max_epoch
  14. self.no_aug_epoch = args.no_aug_epoch
  15. self.aux_bbox_loss = False
  16. # --------------- Loss config ---------------
  17. self.loss_cls_weight = cfg['loss_cls_weight']
  18. self.loss_box_weight = cfg['loss_box_weight']
  19. # --------------- Matcher config ---------------
  20. self.matcher_hpy = cfg['matcher_hpy']
  21. self.matcher = AlignedSimOTA(soft_center_radius = self.matcher_hpy['soft_center_radius'],
  22. topk_candidates = self.matcher_hpy['topk_candidates'],
  23. num_classes = num_classes,
  24. )
  25. def loss_classes(self, pred_cls, target, beta=2.0):
  26. # Quality FocalLoss
  27. """
  28. pred_cls: (torch.Tensor): [N, C]。
  29. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  30. """
  31. label, score = target
  32. pred_sigmoid = pred_cls.sigmoid()
  33. scale_factor = pred_sigmoid
  34. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  35. ce_loss = F.binary_cross_entropy_with_logits(
  36. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  37. bg_class_ind = pred_cls.shape[-1]
  38. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  39. pos_label = label[pos].long()
  40. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  41. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  42. pred_cls[pos, pos_label], score[pos],
  43. reduction='none') * scale_factor.abs().pow(beta)
  44. return ce_loss
  45. def loss_bboxes(self, pred_box, gt_box):
  46. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  47. loss_box = 1.0 - ious
  48. return loss_box
  49. def loss_bboxes_aux(self, pred_reg, gt_box, anchors, stride_tensors):
  50. # xyxy -> cxcy&bwbh
  51. gt_cxcy = (gt_box[..., :2] + gt_box[..., 2:]) * 0.5
  52. gt_bwbh = gt_box[..., 2:] - gt_box[..., :2]
  53. # encode gt box
  54. gt_cxcy_encode = (gt_cxcy - anchors) / stride_tensors
  55. gt_bwbh_encode = torch.log(gt_bwbh / stride_tensors)
  56. gt_box_encode = torch.cat([gt_cxcy_encode, gt_bwbh_encode], dim=-1)
  57. # l1 loss
  58. loss_box_aux = F.l1_loss(pred_reg, gt_box_encode, reduction='none')
  59. return loss_box_aux
  60. def __call__(self, outputs, targets, epoch=0):
  61. """
  62. outputs['pred_obj']: List(Tensor) [B, M, 1]
  63. outputs['pred_cls']: List(Tensor) [B, M, C]
  64. outputs['pred_box']: List(Tensor) [B, M, 4]
  65. outputs['pred_box']: List(Tensor) [B, M, 4]
  66. outputs['strides']: List(Int) [8, 16, 32] output stride
  67. targets: (List) [dict{'boxes': [...],
  68. 'labels': [...],
  69. 'orig_size': ...}, ...]
  70. """
  71. bs = outputs['pred_cls'][0].shape[0]
  72. device = outputs['pred_cls'][0].device
  73. fpn_strides = outputs['strides']
  74. anchors = outputs['anchors']
  75. # preds: [B, M, C]
  76. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  77. box_preds = torch.cat(outputs['pred_box'], dim=1)
  78. # --------------- label assignment ---------------
  79. cls_targets = []
  80. box_targets = []
  81. assign_metrics = []
  82. for batch_idx in range(bs):
  83. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  84. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  85. assigned_result = self.matcher(fpn_strides=fpn_strides,
  86. anchors=anchors,
  87. pred_cls=cls_preds[batch_idx].detach(),
  88. pred_box=box_preds[batch_idx].detach(),
  89. gt_labels=tgt_labels,
  90. gt_bboxes=tgt_bboxes
  91. )
  92. cls_targets.append(assigned_result['assigned_labels'])
  93. box_targets.append(assigned_result['assigned_bboxes'])
  94. assign_metrics.append(assigned_result['assign_metrics'])
  95. # List[B, M, C] -> Tensor[BM, C]
  96. cls_targets = torch.cat(cls_targets, dim=0)
  97. box_targets = torch.cat(box_targets, dim=0)
  98. assign_metrics = torch.cat(assign_metrics, dim=0)
  99. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  100. bg_class_ind = self.num_classes
  101. pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  102. num_fgs = assign_metrics.sum()
  103. if is_dist_avail_and_initialized():
  104. torch.distributed.all_reduce(num_fgs)
  105. num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
  106. # ------------------ Classification loss ------------------
  107. cls_preds = cls_preds.view(-1, self.num_classes)
  108. loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
  109. loss_cls = loss_cls.sum() / num_fgs
  110. # ------------------ Regression loss ------------------
  111. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  112. box_targets_pos = box_targets[pos_inds]
  113. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  114. loss_box = loss_box.sum() / num_fgs
  115. # total loss
  116. losses = self.loss_cls_weight * loss_cls + \
  117. self.loss_box_weight * loss_box
  118. # ------------------ Aux regression loss ------------------
  119. loss_box_aux = None
  120. if epoch >= (self.max_epoch - self.no_aug_epoch - 1):
  121. ## reg_preds
  122. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  123. reg_preds_pos = reg_preds.view(-1, 4)[pos_inds]
  124. ## anchor tensors
  125. anchors_tensors = torch.cat(outputs['anchors'], dim=0)[None].repeat(bs, 1, 1)
  126. anchors_tensors_pos = anchors_tensors.view(-1, 2)[pos_inds]
  127. ## stride tensors
  128. stride_tensors = torch.cat(outputs['stride_tensors'], dim=0)[None].repeat(bs, 1, 1)
  129. stride_tensors_pos = stride_tensors.view(-1, 1)[pos_inds]
  130. ## aux loss
  131. loss_box_aux = self.loss_bboxes_aux(reg_preds_pos, box_targets_pos, anchors_tensors_pos, stride_tensors_pos)
  132. loss_box_aux = loss_box_aux.sum() / num_fgs
  133. losses += loss_box_aux
  134. # Loss dict
  135. if loss_box_aux is None:
  136. loss_dict = dict(
  137. loss_cls = loss_cls,
  138. loss_box = loss_box,
  139. losses = losses
  140. )
  141. else:
  142. loss_dict = dict(
  143. loss_cls = loss_cls,
  144. loss_box = loss_box,
  145. loss_box_aux = loss_box_aux,
  146. losses = losses
  147. )
  148. return loss_dict
  149. def build_criterion(args, cfg, device, num_classes):
  150. criterion = Criterion(args, cfg, device, num_classes)
  151. return criterion
  152. if __name__ == "__main__":
  153. pass