| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- import torch
- import torch.nn as nn
- try:
- from .rtdetr_encoder import build_image_encoder
- from .rtdetr_decoder import build_transformer
- except:
- from rtdetr_encoder import build_image_encoder
- from rtdetr_decoder import build_transformer
- # Real-time Transformer-based Object Detector
- class RT_DETR(nn.Module):
- def __init__(self,
- cfg,
- num_classes = 80,
- conf_thresh = 0.1,
- topk = 100,
- deploy = False,
- no_multi_labels = False,
- ):
- super().__init__()
- # ----------- Basic setting -----------
- self.num_classes = num_classes
- self.num_topk = topk
- self.conf_thresh = conf_thresh
- self.no_multi_labels = no_multi_labels
- self.deploy = deploy
- # ----------- Network setting -----------
- ## Image encoder
- self.image_encoder = build_image_encoder(cfg)
- self.fpn_dims = self.image_encoder.fpn_dims
- ## Detect decoder
- self.detect_decoder = build_transformer(cfg, self.fpn_dims, num_classes, return_intermediate=self.training)
- def post_process(self, box_pred, cls_pred):
- if self.no_multi_labels:
- # [M,]
- scores, labels = torch.max(cls_pred.sigmoid(), dim=1)
- # Keep top k top scoring indices only.
- num_topk = min(self.num_topk, box_pred.size(0))
- # Topk candidates
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # Filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- topk_idxs = topk_idxs[keep_idxs]
- # Top-k results
- topk_scores = topk_scores[keep_idxs]
- topk_labels = labels[topk_idxs]
- topk_bboxes = box_pred[topk_idxs]
- return topk_bboxes, topk_scores, topk_labels
- else:
- # Top-k select
- cls_pred = cls_pred[0].flatten().sigmoid_()
- box_pred = box_pred[0]
- # Keep top k top scoring indices only.
- num_topk = min(self.num_topk, box_pred.size(0))
- # Topk candidates
- predicted_prob, topk_idxs = cls_pred.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:self.num_topk]
- # Filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- topk_box_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- ## Top-k results
- topk_scores = predicted_prob[:self.num_topk]
- topk_labels = topk_idxs % self.num_classes
- topk_bboxes = box_pred[topk_box_idxs]
- return topk_bboxes, topk_scores, topk_labels
-
- def forward(self, x, targets=None):
- # ----------- Image Encoder -----------
- pyramid_feats = self.image_encoder(x)
- # ----------- Transformer -----------
- transformer_outputs = self.detect_decoder(pyramid_feats, targets)
- pred_boxes, pred_logits, enc_topk_bboxes, enc_topk_logits, dn_meta = transformer_outputs
- if self.training:
- return transformer_outputs
- else:
- box_preds = pred_boxes[-1]
- cls_preds = pred_logits[-1]
-
- # TODO: post-process
- bboxes, scores, labels = self.post_process(box_preds, cls_preds)
- return bboxes, scores, labels
-
- # ----------- Head -----------
- outputs = self.detect_head(pred_boxes, pred_logits, enc_topk_bboxes, enc_topk_logits, dn_meta, targets)
- if self.training:
- outputs_dict = outputs
- else:
- pred_boxes, pred_logits = outputs[0], outputs[1]
- return pred_boxes, pred_logits
-
- return outputs_dict
- if __name__ == '__main__':
- import time
- from thop import profile
- from loss import build_criterion
- # Model config
- cfg = {
- 'width': 1.0,
- 'depth': 1.0,
- 'out_stride': [8, 16, 32],
- # Image Encoder - Backbone
- 'backbone': 'resnet18',
- 'backbone_norm': 'BN',
- 'res5_dilation': False,
- 'pretrained': True,
- 'pretrained_weight': 'imagenet1k_v1',
- # Image Encoder - FPN
- 'fpn': 'hybrid_encoder',
- 'fpn_act': 'silu',
- 'fpn_norm': 'BN',
- 'fpn_depthwise': False,
- 'hidden_dim': 256,
- 'en_num_heads': 8,
- 'en_num_layers': 1,
- 'en_mlp_ratio': 4.0,
- 'en_dropout': 0.1,
- 'pe_temperature': 10000.,
- 'en_act': 'gelu',
- # Transformer Decoder
- 'transformer': 'rtdetr_transformer',
- 'hidden_dim': 256,
- 'de_num_heads': 8,
- 'de_num_layers': 6,
- 'de_mlp_ratio': 4.0,
- 'de_dropout': 0.0,
- 'de_act': 'gelu',
- 'de_num_points': 4,
- 'num_queries': 300,
- 'learnt_init_query': False,
- 'pe_temperature': 10000.,
- 'dn_num_denoising': 100,
- 'dn_label_noise_ratio': 0.5,
- 'dn_box_noise_scale': 1,
- # Head
- 'det_head': 'dino_head',
- # Matcher
- 'matcher_hpy': {'cost_class': 2.0,
- 'cost_bbox': 5.0,
- 'cost_giou': 2.0,},
- # Loss
- 'use_vfl': True,
- 'loss_coeff': {'class': 1,
- 'bbox': 5,
- 'giou': 2,
- 'no_object': 0.1,},
- }
- bs = 1
- # Create a batch of images & targets
- image = torch.randn(bs, 3, 640, 640)
- targets = [{
- 'labels': torch.tensor([2, 4, 5, 8]).long(),
- 'boxes': torch.tensor([[0, 0, 10, 10], [12, 23, 56, 70], [0, 10, 20, 30], [50, 60, 55, 150]]).float() / 640.
- }] * bs
- # Create model
- model = RT_DETR(cfg, num_classes=80)
- model.train()
- # Create criterion
- criterion = build_criterion(cfg, num_classes=80)
- # Model inference
- t0 = time.time()
- outputs = model(image, targets)
- t1 = time.time()
- print('Infer time: ', t1 - t0)
- # Compute loss
- loss = criterion(*outputs, targets)
- for k in loss.keys():
- print("{} : {}".format(k, loss[k].item()))
- print('==============================')
- model.eval()
- flops, params = profile(model, inputs=(image, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|