| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import torch
- def inverse_sigmoid(x, eps=1e-5):
- x = x.clamp(min=0., max=1.)
- return torch.log(x.clamp(min=eps) / (1 - x).clamp(min=eps))
- def bbox_cxcywh_to_xyxy(x):
- x_c, y_c, w, h = x.unbind(-1)
- b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
- (x_c + 0.5 * w), (y_c + 0.5 * h)]
- return torch.stack(b, dim=-1)
- def bbox_xyxy_to_cxcywh(x):
- x0, y0, x1, y1 = x.unbind(-1)
- b = [(x0 + x1) / 2, (y0 + y1) / 2,
- (x1 - x0), (y1 - y0)]
- return torch.stack(b, dim=-1)
- def get_contrastive_denoising_training_group(targets,
- num_classes,
- num_queries,
- class_embed,
- num_denoising=100,
- label_noise_ratio=0.5,
- box_noise_scale=1.0):
- if num_denoising <= 0:
- return None, None, None, None
- num_gts = [len(t["labels"]) for t in targets]
- max_gt_num = max(num_gts)
- if max_gt_num == 0:
- return None, None, None, None
- num_group = num_denoising // max_gt_num
- num_group = 1 if num_group == 0 else num_group
- # pad gt to max_num of a batch
- bs = len(targets)
- # [bs, max_gt_num]
- input_query_class = torch.full([bs, max_gt_num], num_classes).long()
- # [bs, max_gt_num, 4]
- input_query_bbox = torch.zeros([bs, max_gt_num, 4])
- pad_gt_mask = torch.zeros([bs, max_gt_num])
- for i in range(bs):
- num_gt = num_gts[i]
- if num_gt > 0:
- input_query_class[i, :num_gt] = targets[i]["labels"].squeeze(-1)
- input_query_bbox[i, :num_gt] = targets[i]["boxes"]
- pad_gt_mask[i, :num_gt] = 1
- # each group has positive and negative queries.
- input_query_class = input_query_class.repeat(1, 2 * num_group) # [bs, 2*num_denoising], num_denoising = 2 * num_group * max_gt_num
- input_query_bbox = input_query_bbox.repeat(1, 2 * num_group, 1) # [bs, 2*num_denoising, 4]
- pad_gt_mask = pad_gt_mask.repeat(1, 2 * num_group)
- # positive and negative mask
- negative_gt_mask = torch.zeros([bs, max_gt_num * 2, 1])
- negative_gt_mask[:, max_gt_num:] = 1
- negative_gt_mask = negative_gt_mask.repeat(1, num_group, 1)
- positive_gt_mask = 1 - negative_gt_mask
- # contrastive denoising training positive index
- positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
- dn_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
- dn_positive_idx = torch.split(dn_positive_idx, [n * num_group for n in num_gts])
-
- # total denoising queries
- num_denoising = int(max_gt_num * 2 * num_group) # num_denoising *= 2
- if label_noise_ratio > 0:
- input_query_class = input_query_class.flatten() # [bs * num_denoising]
- pad_gt_mask = pad_gt_mask.flatten()
- # half of bbox prob
- mask = torch.rand(input_query_class.shape) < (label_noise_ratio * 0.5)
- chosen_idx = torch.nonzero(mask * pad_gt_mask).squeeze(-1)
- # randomly put a new one here
- new_label = torch.randint_like(
- chosen_idx, 0, num_classes, dtype=input_query_class.dtype)
- # [bs * num_denoising]
- input_query_class = torch.scatter(input_query_class, 0, chosen_idx, new_label)
- # input_query_class.scatter_(chosen_idx, new_label)
- # [bs * num_denoising] -> # [bs, num_denoising]
- input_query_class = input_query_class.reshape(bs, num_denoising)
- pad_gt_mask = pad_gt_mask.reshape(bs, num_denoising)
- if box_noise_scale > 0:
- known_bbox = bbox_cxcywh_to_xyxy(input_query_bbox)
- diff = torch.tile(input_query_bbox[..., 2:] * 0.5,
- [1, 1, 2]) * box_noise_scale
- rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
- rand_part = torch.rand(input_query_bbox.shape)
- rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (
- 1 - negative_gt_mask)
- rand_part *= rand_sign
- known_bbox += rand_part * diff
- known_bbox.clamp_(min=0.0, max=1.0)
- input_query_bbox = bbox_xyxy_to_cxcywh(known_bbox)
- input_query_bbox = inverse_sigmoid(input_query_bbox)
- # [num_classes + 1, hidden_dim]
- class_embed = torch.cat([class_embed, torch.zeros([1, class_embed.shape[-1]])])
- # input_query_class = paddle.gather(class_embed, input_query_class.flatten(), axis=0)
- # input_query_class: [bs, num_denoising] -> [bs*num_denoising, hidden_dim]
- input_query_class = torch.torch.index_select(class_embed, 0, input_query_class.flatten())
- # [bs*num_denoising, hidden_dim] -> [bs, num_denoising, hidden_dim]
- input_query_class = input_query_class.reshape(bs, num_denoising, -1)
-
- tgt_size = num_denoising + num_queries
- attn_mask = torch.ones([tgt_size, tgt_size]) < 0
- # match query cannot see the reconstruction
- attn_mask[num_denoising:, :num_denoising] = True
- # reconstruct cannot see each other
- for i in range(num_group):
- if i == 0:
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), max_gt_num *
- 2 * (i + 1):num_denoising] = True
- if i == num_group - 1:
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), :max_gt_num *
- i * 2] = True
- else:
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), max_gt_num *
- 2 * (i + 1):num_denoising] = True
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), :max_gt_num *
- 2 * i] = True
- attn_mask = ~attn_mask
- dn_meta = {
- "dn_positive_idx": dn_positive_idx,
- "dn_num_group": num_group,
- "dn_num_split": [num_denoising, num_queries]
- }
- return input_query_class, input_query_bbox, attn_mask, dn_meta
|