yolox2.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolox2_backbone import build_backbone
  6. from .yolox2_neck import build_neck
  7. from .yolox2_pafpn import build_fpn
  8. from .yolox2_head import build_det_head
  9. from .yolox2_pred import build_pred_layer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # YOLOX2
  13. class YOLOX2(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. device,
  17. num_classes = 20,
  18. conf_thresh = 0.01,
  19. nms_thresh = 0.5,
  20. topk = 1000,
  21. trainable = False,
  22. deploy = False,
  23. no_multi_labels = False,
  24. nms_class_agnostic = False):
  25. super(YOLOX2, self).__init__()
  26. # ---------------------- Basic Parameters ----------------------
  27. self.cfg = cfg
  28. self.device = device
  29. self.strides = cfg['stride']
  30. self.num_classes = num_classes
  31. self.trainable = trainable
  32. self.conf_thresh = conf_thresh
  33. self.nms_thresh = nms_thresh
  34. self.num_levels = len(self.strides)
  35. self.num_classes = num_classes
  36. self.topk_candidates = topk
  37. self.deploy = deploy
  38. self.no_multi_labels = no_multi_labels
  39. self.nms_class_agnostic = nms_class_agnostic
  40. self.head_dim = round(256 * cfg['width'])
  41. # ---------------------- Network Parameters ----------------------
  42. ## ----------- Backbone -----------
  43. self.backbone, feat_dims = build_backbone(cfg)
  44. ## ----------- Neck: SPP -----------
  45. self.neck = build_neck(cfg, feat_dims[-1], feat_dims[-1])
  46. feat_dims[-1] = self.neck.out_dim
  47. ## ----------- Neck: FPN -----------
  48. self.fpn = build_fpn(cfg, feat_dims, out_dim=self.head_dim)
  49. self.fpn_dims = self.fpn.out_dim
  50. ## ----------- Heads -----------
  51. self.det_heads = build_det_head(cfg, self.fpn_dims, self.head_dim, self.num_levels)
  52. ## ----------- Preds -----------
  53. self.pred_layers = build_pred_layer(cls_dim = self.det_heads.cls_head_dim,
  54. reg_dim = self.det_heads.reg_head_dim,
  55. strides = self.strides,
  56. num_classes = num_classes,
  57. num_coords = 4,
  58. num_levels = self.num_levels)
  59. ## post-process
  60. def post_process(self, cls_preds, box_preds):
  61. """
  62. Input:
  63. cls_preds: List[np.array] -> [[M, C], ...]
  64. box_preds: List[np.array] -> [[M, 4], ...]
  65. Output:
  66. bboxes: np.array -> [N, 4]
  67. scores: np.array -> [N,]
  68. labels: np.array -> [N,]
  69. """
  70. assert len(cls_preds) == self.num_levels
  71. all_scores = []
  72. all_labels = []
  73. all_bboxes = []
  74. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  75. cls_pred_i = cls_pred_i[0]
  76. box_pred_i = box_pred_i[0]
  77. if self.no_multi_labels:
  78. # [M,]
  79. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  80. # Keep top k top scoring indices only.
  81. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  82. # topk candidates
  83. predicted_prob, topk_idxs = scores.sort(descending=True)
  84. topk_scores = predicted_prob[:num_topk]
  85. topk_idxs = topk_idxs[:num_topk]
  86. # filter out the proposals with low confidence score
  87. keep_idxs = topk_scores > self.conf_thresh
  88. scores = topk_scores[keep_idxs]
  89. topk_idxs = topk_idxs[keep_idxs]
  90. labels = labels[topk_idxs]
  91. bboxes = box_pred_i[topk_idxs]
  92. else:
  93. # [M, C] -> [MC,]
  94. scores_i = cls_pred_i.sigmoid().flatten()
  95. # Keep top k top scoring indices only.
  96. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  97. # torch.sort is actually faster than .topk (at least on GPUs)
  98. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  99. topk_scores = predicted_prob[:num_topk]
  100. topk_idxs = topk_idxs[:num_topk]
  101. # filter out the proposals with low confidence score
  102. keep_idxs = topk_scores > self.conf_thresh
  103. scores = topk_scores[keep_idxs]
  104. topk_idxs = topk_idxs[keep_idxs]
  105. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  106. labels = topk_idxs % self.num_classes
  107. bboxes = box_pred_i[anchor_idxs]
  108. all_scores.append(scores)
  109. all_labels.append(labels)
  110. all_bboxes.append(bboxes)
  111. scores = torch.cat(all_scores, dim=0)
  112. labels = torch.cat(all_labels, dim=0)
  113. bboxes = torch.cat(all_bboxes, dim=0)
  114. # to cpu & numpy
  115. scores = scores.cpu().numpy()
  116. labels = labels.cpu().numpy()
  117. bboxes = bboxes.cpu().numpy()
  118. # nms
  119. scores, labels, bboxes = multiclass_nms(
  120. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  121. return bboxes, scores, labels
  122. # ---------------------- Main Process for Inference ----------------------
  123. @torch.no_grad()
  124. def inference_single_image(self, x):
  125. # ---------------- Backbone ----------------
  126. pyramid_feats = self.backbone(x)
  127. # ---------------- Neck: SPP ----------------
  128. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  129. # ---------------- Neck: PaFPN ----------------
  130. pyramid_feats = self.fpn(pyramid_feats)
  131. # ---------------- Heads ----------------
  132. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  133. # ---------------- Preds ----------------
  134. outputs = self.pred_layers(cls_feats, reg_feats)
  135. all_cls_preds = outputs['pred_cls']
  136. all_box_preds = outputs['pred_box']
  137. if self.deploy:
  138. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  139. box_preds = torch.cat(all_box_preds, dim=1)[0]
  140. scores = cls_preds.sigmoid()
  141. bboxes = box_preds
  142. # [n_anchors_all, 4 + C]
  143. outputs = torch.cat([bboxes, scores], dim=-1)
  144. return outputs
  145. else:
  146. # post process
  147. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  148. return bboxes, scores, labels
  149. def forward(self, x):
  150. if not self.trainable:
  151. return self.inference_single_image(x)
  152. else:
  153. # ---------------- Backbone ----------------
  154. pyramid_feats = self.backbone(x)
  155. # ---------------- Neck: SPP ----------------
  156. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  157. # ---------------- Neck: PaFPN ----------------
  158. pyramid_feats = self.fpn(pyramid_feats)
  159. # ---------------- Heads ----------------
  160. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  161. # ---------------- Preds ----------------
  162. outputs = self.pred_layers(cls_feats, reg_feats)
  163. return outputs