yolo_free_v2_pred.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. class SingleLevelPredLayer(nn.Module):
  5. def __init__(self, cfg, cls_dim, reg_dim, num_classes):
  6. super().__init__()
  7. # --------- Basic Parameters ----------
  8. self.cfg = cfg
  9. self.cls_dim = cls_dim
  10. self.reg_dim = reg_dim
  11. self.num_classes = num_classes
  12. # --------- Network Parameters ----------
  13. ## pred_conv
  14. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  15. self.reg_pred = nn.Conv2d(reg_dim, 4*cfg['reg_max'], kernel_size=1)
  16. self.init_weight()
  17. def init_weight(self):
  18. # cls pred
  19. init_prob = 0.01
  20. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  21. b = self.cls_pred.bias.view(1, -1)
  22. b.data.fill_(bias_value.item())
  23. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  24. # reg pred
  25. b = self.reg_pred.bias.view(-1, )
  26. b.data.fill_(1.0)
  27. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  28. w = self.reg_pred.weight
  29. w.data.fill_(0.)
  30. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  31. def forward(self, cls_feat, reg_feat):
  32. """
  33. in_feats: (Tensor) [B, C, H, W]
  34. """
  35. cls_pred = self.cls_pred(cls_feat)
  36. reg_pred = self.reg_pred(reg_feat)
  37. return cls_pred, reg_pred
  38. class MultiLevelPredLayer(nn.Module):
  39. def __init__(self, cfg, cls_dim, reg_dim, strides, num_classes, num_levels=3):
  40. super().__init__()
  41. # --------- Basic Parameters ----------
  42. self.cfg = cfg
  43. self.cls_dim = cls_dim
  44. self.reg_dim = reg_dim
  45. self.strides = strides
  46. self.num_classes = num_classes
  47. self.num_levels = num_levels
  48. # ----------- Network Parameters -----------
  49. ## proj_conv
  50. self.proj = nn.Parameter(torch.linspace(0, cfg['reg_max'], cfg['reg_max']), requires_grad=False)
  51. self.proj_conv = nn.Conv2d(cfg['reg_max'], 1, kernel_size=1, bias=False)
  52. self.proj_conv.weight = nn.Parameter(self.proj.view([1, cfg['reg_max'], 1, 1]).clone().detach(), requires_grad=False)
  53. ## pred layers
  54. self.multi_level_preds = nn.ModuleList(
  55. [SingleLevelPredLayer(
  56. cfg,
  57. cls_dim,
  58. reg_dim,
  59. num_classes)
  60. for _ in range(num_levels)
  61. ])
  62. def generate_anchors(self, level, fmp_size):
  63. """
  64. fmp_size: (List) [H, W]
  65. """
  66. # generate grid cells
  67. fmp_h, fmp_w = fmp_size
  68. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  69. # [H, W, 2] -> [HW, 2]
  70. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  71. anchors += 0.5 # add center offset
  72. anchors *= self.strides[level]
  73. return anchors
  74. def decode_bbox(self, reg_pred, anchors, stride):
  75. # ----------------------- Decode bbox -----------------------
  76. B, M = reg_pred.shape[:2]
  77. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
  78. reg_pred = reg_pred.reshape([B, M, 4, self.reg_max])
  79. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  80. reg_pred = reg_pred.permute(0, 3, 2, 1).contiguous()
  81. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  82. reg_pred = self.proj_conv(F.softmax(reg_pred, dim=1))
  83. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  84. reg_pred = reg_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  85. ## tlbr -> xyxy
  86. x1y1_pred = anchors[None] - reg_pred[..., :2] * stride
  87. x2y2_pred = anchors[None] + reg_pred[..., 2:] * stride
  88. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  89. return box_pred
  90. def forward(self, cls_feats, reg_feats):
  91. """
  92. feats: List[(Tensor)] [[B, C, H, W], ...]
  93. """
  94. all_anchors = []
  95. all_strides = []
  96. all_cls_preds = []
  97. all_reg_preds = []
  98. all_box_preds = []
  99. for level in range(self.num_levels):
  100. cls_pred, reg_pred = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  101. B, _, H, W = cls_pred.size()
  102. fmp_size = [H, W]
  103. # generate anchor boxes: [M, 4]
  104. anchors = self.generate_anchors(level, fmp_size)
  105. anchors = anchors.to(cls_pred.device)
  106. # stride tensor: [M, 1]
  107. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
  108. # process preds
  109. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  110. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.cfg['reg_max'])
  111. box_pred = self.decode_bbox(reg_pred, anchors, self.strides[level])
  112. # collect preds
  113. all_cls_preds.append(cls_pred)
  114. all_reg_preds.append(reg_pred)
  115. all_box_preds.append(box_pred)
  116. all_anchors.append(anchors)
  117. all_strides.append(stride_tensor)
  118. # output dict
  119. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  120. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  121. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  122. "anchors": all_anchors, # List(Tensor) [M, 2]
  123. "strides": self.strides, # List(Int) = [8, 16, 32]
  124. "stride_tensor": all_strides # List(Tensor) [M, 1]
  125. }
  126. return outputs
  127. # build detection head
  128. def build_pred_layer(cfg, cls_dim, reg_dim, strides, num_classes, num_levels=3):
  129. pred_layers = MultiLevelPredLayer(cfg, cls_dim, reg_dim, strides, num_classes, num_levels)
  130. return pred_layers