| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- class SingleLevelPredLayer(nn.Module):
- def __init__(self, cfg, cls_dim, reg_dim, num_classes):
- super().__init__()
- # --------- Basic Parameters ----------
- self.cfg = cfg
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.num_classes = num_classes
- # --------- Network Parameters ----------
- ## pred_conv
- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(reg_dim, 4*cfg['reg_max'], kernel_size=1)
- self.init_weight()
-
- def init_weight(self):
- # cls pred
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = self.reg_pred.weight
- w.data.fill_(0.)
- self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- def forward(self, cls_feat, reg_feat):
- """
- in_feats: (Tensor) [B, C, H, W]
- """
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- return cls_pred, reg_pred
-
- class MultiLevelPredLayer(nn.Module):
- def __init__(self, cfg, cls_dim, reg_dim, strides, num_classes, num_levels=3):
- super().__init__()
- # --------- Basic Parameters ----------
- self.cfg = cfg
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.strides = strides
- self.num_classes = num_classes
- self.num_levels = num_levels
- # ----------- Network Parameters -----------
- ## proj_conv
- self.proj = nn.Parameter(torch.linspace(0, cfg['reg_max'], cfg['reg_max']), requires_grad=False)
- self.proj_conv = nn.Conv2d(cfg['reg_max'], 1, kernel_size=1, bias=False)
- self.proj_conv.weight = nn.Parameter(self.proj.view([1, cfg['reg_max'], 1, 1]).clone().detach(), requires_grad=False)
- ## pred layers
- self.multi_level_preds = nn.ModuleList(
- [SingleLevelPredLayer(
- cfg,
- cls_dim,
- reg_dim,
- num_classes)
- for _ in range(num_levels)
- ])
- def generate_anchors(self, level, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchors += 0.5 # add center offset
- anchors *= self.strides[level]
- return anchors
-
- def decode_bbox(self, reg_pred, anchors, stride):
- # ----------------------- Decode bbox -----------------------
- B, M = reg_pred.shape[:2]
- # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
- reg_pred = reg_pred.reshape([B, M, 4, self.reg_max])
- # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
- reg_pred = reg_pred.permute(0, 3, 2, 1).contiguous()
- # [B, reg_max, 4, M] -> [B, 1, 4, M]
- reg_pred = self.proj_conv(F.softmax(reg_pred, dim=1))
- # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
- reg_pred = reg_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
- ## tlbr -> xyxy
- x1y1_pred = anchors[None] - reg_pred[..., :2] * stride
- x2y2_pred = anchors[None] + reg_pred[..., 2:] * stride
- box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
- return box_pred
-
- def forward(self, cls_feats, reg_feats):
- """
- feats: List[(Tensor)] [[B, C, H, W], ...]
- """
- all_anchors = []
- all_strides = []
- all_cls_preds = []
- all_reg_preds = []
- all_box_preds = []
- for level in range(self.num_levels):
- cls_pred, reg_pred = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- # generate anchor boxes: [M, 4]
- anchors = self.generate_anchors(level, fmp_size)
- anchors = anchors.to(cls_pred.device)
- # stride tensor: [M, 1]
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
- # process preds
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.cfg['reg_max'])
- box_pred = self.decode_bbox(reg_pred, anchors, self.strides[level])
- # collect preds
- all_cls_preds.append(cls_pred)
- all_reg_preds.append(reg_pred)
- all_box_preds.append(box_pred)
- all_anchors.append(anchors)
- all_strides.append(stride_tensor)
- # output dict
- outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
- "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
- "anchors": all_anchors, # List(Tensor) [M, 2]
- "strides": self.strides, # List(Int) = [8, 16, 32]
- "stride_tensor": all_strides # List(Tensor) [M, 1]
- }
-
- return outputs
-
- # build detection head
- def build_pred_layer(cfg, cls_dim, reg_dim, strides, num_classes, num_levels=3):
- pred_layers = MultiLevelPredLayer(cfg, cls_dim, reg_dim, strides, num_classes, num_levels)
- return pred_layers
|