yolov1.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. import torch
  2. import torch.nn as nn
  3. import numpy as np
  4. from utils.misc import multiclass_nms
  5. from .yolov1_backbone import build_backbone
  6. from .yolov1_neck import build_neck
  7. from .yolov1_head import build_head
  8. # YOLOv1
  9. class YOLOv1(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. img_size=None,
  14. num_classes=20,
  15. conf_thresh=0.01,
  16. nms_thresh=0.5,
  17. trainable=False):
  18. super(YOLOv1, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.img_size = img_size # 输入图像大小
  22. self.device = device # cuda或者是cpu
  23. self.num_classes = num_classes # 类别的数量
  24. self.trainable = trainable # 训练的标记
  25. self.conf_thresh = conf_thresh # 得分阈值
  26. self.nms_thresh = nms_thresh # NMS阈值
  27. self.stride = 32 # 网络的最大步长
  28. # ------------------- Network Structure -------------------
  29. ## 主干网络
  30. self.backbone, feat_dim = build_backbone(
  31. cfg['backbone'], trainable&cfg['pretrained'])
  32. ## 颈部网络
  33. self.neck = build_neck(cfg, feat_dim, out_dim=512)
  34. head_dim = self.neck.out_dim
  35. ## 检测头
  36. self.head = build_head(cfg, head_dim, head_dim, num_classes)
  37. ## 预测层
  38. self.obj_pred = nn.Conv2d(head_dim, 1, kernel_size=1)
  39. self.cls_pred = nn.Conv2d(head_dim, num_classes, kernel_size=1)
  40. self.reg_pred = nn.Conv2d(head_dim, 4, kernel_size=1)
  41. def create_grid(self, fmp_size):
  42. """
  43. 用于生成G矩阵,其中每个元素都是特征图上的像素坐标。
  44. """
  45. # 特征图的宽和高
  46. ws, hs = fmp_size
  47. # 生成网格的x坐标和y坐标
  48. grid_y, grid_x = torch.meshgrid([torch.arange(hs), torch.arange(ws)])
  49. # 将xy两部分的坐标拼起来:[H, W, 2]
  50. grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()
  51. # [H, W, 2] -> [HW, 2] -> [HW, 2]
  52. grid_xy = grid_xy.view(-1, 2).to(self.device)
  53. return grid_xy
  54. def decode_boxes(self, pred, fmp_size):
  55. """
  56. 将txtytwth转换为常用的x1y1x2y2形式。
  57. """
  58. # 生成网格坐标矩阵
  59. grid_cell = self.create_grid(fmp_size)
  60. # 计算预测边界框的中心点坐标和宽高
  61. pred_ctr = (torch.sigmoid(pred[..., :2]) + grid_cell) * self.stride
  62. pred_wh = torch.exp(pred[..., 2:]) * self.stride
  63. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  64. pred_x1y1 = pred_ctr - pred_wh * 0.5
  65. pred_x2y2 = pred_ctr + pred_wh * 0.5
  66. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  67. return pred_box
  68. def postprocess(self, bboxes, scores):
  69. """
  70. Input:
  71. bboxes: [HxW, 4]
  72. scores: [HxW, num_classes]
  73. Output:
  74. bboxes: [N, 4]
  75. score: [N,]
  76. labels: [N,]
  77. """
  78. labels = np.argmax(scores, axis=1)
  79. scores = scores[(np.arange(scores.shape[0]), labels)]
  80. # threshold
  81. keep = np.where(scores >= self.conf_thresh)
  82. bboxes = bboxes[keep]
  83. scores = scores[keep]
  84. labels = labels[keep]
  85. # nms
  86. scores, labels, bboxes = multiclass_nms(
  87. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  88. return bboxes, scores, labels
  89. @torch.no_grad()
  90. def inference(self, x):
  91. # 主干网络
  92. feat = self.backbone(x)
  93. # 颈部网络
  94. feat = self.neck(feat)
  95. # 检测头
  96. cls_feat, reg_feat = self.head(feat)
  97. # 预测层
  98. obj_pred = self.obj_pred(cls_feat)
  99. cls_pred = self.cls_pred(cls_feat)
  100. reg_pred = self.reg_pred(reg_feat)
  101. fmp_size = obj_pred.shape[-2:]
  102. # 对 pred 的size做一些view调整,便于后续的处理
  103. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  104. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  105. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  106. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  107. # 测试时,笔者默认batch是1,
  108. # 因此,我们不需要用batch这个维度,用[0]将其取走。
  109. obj_pred = obj_pred[0] # [H*W, 1]
  110. cls_pred = cls_pred[0] # [H*W, NC]
  111. reg_pred = reg_pred[0] # [H*W, 4]
  112. # 每个边界框的得分
  113. scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())
  114. # 解算边界框, 并归一化边界框: [H*W, 4]
  115. bboxes = self.decode_boxes(reg_pred, fmp_size)
  116. # 将预测放在cpu处理上,以便进行后处理
  117. scores = scores.cpu().numpy()
  118. bboxes = bboxes.cpu().numpy()
  119. # 后处理
  120. bboxes, scores, labels = self.postprocess(bboxes, scores)
  121. return bboxes, scores, labels
  122. def forward(self, x):
  123. if not self.trainable:
  124. return self.inference(x)
  125. else:
  126. # 主干网络
  127. feat = self.backbone(x)
  128. # 颈部网络
  129. feat = self.neck(feat)
  130. # 检测头
  131. cls_feat, reg_feat = self.head(feat)
  132. # 预测层
  133. obj_pred = self.obj_pred(cls_feat)
  134. cls_pred = self.cls_pred(cls_feat)
  135. reg_pred = self.reg_pred(reg_feat)
  136. fmp_size = obj_pred.shape[-2:]
  137. # 对 pred 的size做一些view调整,便于后续的处理
  138. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  139. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  140. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  141. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  142. # decode bbox
  143. box_pred = self.decode_boxes(reg_pred, fmp_size)
  144. # 网络输出
  145. outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1]
  146. "pred_cls": cls_pred, # (Tensor) [B, M, C]
  147. "pred_box": box_pred, # (Tensor) [B, M, 4]
  148. "stride": self.stride, # (Int)
  149. "fmp_size": fmp_size # (List) [fmp_h, fmp_w]
  150. }
  151. return outputs