engine.py 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8 Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # path to save model
  34. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  35. os.makedirs(self.path_to_save, exist_ok=True)
  36. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  37. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  38. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  39. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  40. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  41. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  42. self.data_cfg = data_cfg
  43. self.model_cfg = model_cfg
  44. self.trans_cfg = trans_cfg
  45. # ---------------------------- Build Transform ----------------------------
  46. self.train_transform, self.trans_cfg = build_transform(
  47. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  48. self.val_transform, _ = build_transform(
  49. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  50. # ---------------------------- Build Dataset & Dataloader ----------------------------
  51. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  52. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  53. # ---------------------------- Build Evaluator ----------------------------
  54. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  55. # ---------------------------- Build Grad. Scaler ----------------------------
  56. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  57. # ---------------------------- Build Optimizer ----------------------------
  58. accumulate = max(1, round(64 / self.args.batch_size))
  59. print('Grad Accumulate: {}'.format(accumulate))
  60. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  61. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  62. # ---------------------------- Build LR Scheduler ----------------------------
  63. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  64. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  65. if self.args.resume:
  66. self.lr_scheduler.step()
  67. # ---------------------------- Build Model-EMA ----------------------------
  68. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  69. print('Build ModelEMA ...')
  70. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  71. else:
  72. self.model_ema = None
  73. def train(self, model):
  74. for epoch in range(self.start_epoch, self.args.max_epoch):
  75. if self.args.distributed:
  76. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  77. # check second stage
  78. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  79. self.check_second_stage()
  80. # save model of the last mosaic epoch
  81. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  82. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  83. if not os.path.exists(checkpoint_path):
  84. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  85. torch.save({'model': model.state_dict(),
  86. 'mAP': round(self.evaluator.map*100, 1),
  87. 'optimizer': self.optimizer.state_dict(),
  88. 'epoch': self.epoch,
  89. 'args': self.args},
  90. checkpoint_path)
  91. # train one epoch
  92. self.epoch = epoch
  93. self.train_one_epoch(model)
  94. # eval one epoch
  95. if self.heavy_eval:
  96. model_eval = model.module if self.args.distributed else model
  97. self.eval(model_eval)
  98. else:
  99. model_eval = model.module if self.args.distributed else model
  100. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  101. self.eval(model_eval)
  102. def eval(self, model):
  103. # chech model
  104. model_eval = model if self.model_ema is None else self.model_ema.ema
  105. if distributed_utils.is_main_process():
  106. # check evaluator
  107. if self.evaluator is None:
  108. print('No evaluator ... save model and go on training.')
  109. print('Saving state, epoch: {}'.format(self.epoch + 1))
  110. weight_name = '{}_no_eval.pth'.format(self.args.model)
  111. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  112. torch.save({'model': model_eval.state_dict(),
  113. 'mAP': -1.,
  114. 'optimizer': self.optimizer.state_dict(),
  115. 'epoch': self.epoch,
  116. 'args': self.args},
  117. checkpoint_path)
  118. else:
  119. print('eval ...')
  120. # set eval mode
  121. model_eval.trainable = False
  122. model_eval.eval()
  123. # evaluate
  124. with torch.no_grad():
  125. self.evaluator.evaluate(model_eval)
  126. # save model
  127. cur_map = self.evaluator.map
  128. if cur_map > self.best_map:
  129. # update best-map
  130. self.best_map = cur_map
  131. # save model
  132. print('Saving state, epoch:', self.epoch + 1)
  133. weight_name = '{}_best.pth'.format(self.args.model)
  134. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  135. torch.save({'model': model_eval.state_dict(),
  136. 'mAP': round(self.best_map*100, 1),
  137. 'optimizer': self.optimizer.state_dict(),
  138. 'epoch': self.epoch,
  139. 'args': self.args},
  140. checkpoint_path)
  141. # set train mode.
  142. model_eval.trainable = True
  143. model_eval.train()
  144. if self.args.distributed:
  145. # wait for all processes to synchronize
  146. dist.barrier()
  147. def train_one_epoch(self, model):
  148. # basic parameters
  149. epoch_size = len(self.train_loader)
  150. img_size = self.args.img_size
  151. t0 = time.time()
  152. nw = epoch_size * self.args.wp_epoch
  153. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  154. # train one epoch
  155. for iter_i, (images, targets) in enumerate(self.train_loader):
  156. ni = iter_i + self.epoch * epoch_size
  157. # Warmup
  158. if ni <= nw:
  159. xi = [0, nw] # x interp
  160. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  161. for j, x in enumerate(self.optimizer.param_groups):
  162. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  163. x['lr'] = np.interp(
  164. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  165. if 'momentum' in x:
  166. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  167. # to device
  168. images = images.to(self.device, non_blocking=True).float() / 255.
  169. # Multi scale
  170. if self.args.multi_scale:
  171. images, targets, img_size = self.rescale_image_targets(
  172. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  173. else:
  174. targets = self.refine_targets(targets, self.args.min_box_size)
  175. # visualize train targets
  176. if self.args.vis_tgt:
  177. vis_data(images*255, targets)
  178. # inference
  179. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  180. outputs = model(images)
  181. # loss
  182. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  183. losses = loss_dict['losses']
  184. losses *= images.shape[0] # loss * bs
  185. # reduce
  186. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  187. # gradient averaged between devices in DDP mode
  188. losses *= distributed_utils.get_world_size()
  189. # backward
  190. self.scaler.scale(losses).backward()
  191. # Optimize
  192. if ni - self.last_opt_step >= accumulate:
  193. if self.clip_grad > 0:
  194. # unscale gradients
  195. self.scaler.unscale_(self.optimizer)
  196. # clip gradients
  197. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  198. # optimizer.step
  199. self.scaler.step(self.optimizer)
  200. self.scaler.update()
  201. self.optimizer.zero_grad()
  202. # ema
  203. if self.model_ema is not None:
  204. self.model_ema.update(model)
  205. self.last_opt_step = ni
  206. # display
  207. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  208. t1 = time.time()
  209. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  210. # basic infor
  211. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  212. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  213. log += '[lr: {:.6f}]'.format(cur_lr[2])
  214. # loss infor
  215. for k in loss_dict_reduced.keys():
  216. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  217. # other infor
  218. log += '[time: {:.2f}]'.format(t1 - t0)
  219. log += '[size: {}]'.format(img_size)
  220. # print log infor
  221. print(log, flush=True)
  222. t0 = time.time()
  223. self.lr_scheduler.step()
  224. def check_second_stage(self):
  225. # set second stage
  226. print('============== Second stage of Training ==============')
  227. self.second_stage = True
  228. # close mosaic augmentation
  229. if self.train_loader.dataset.mosaic_prob > 0.:
  230. print(' - Close < Mosaic Augmentation > ...')
  231. self.train_loader.dataset.mosaic_prob = 0.
  232. self.heavy_eval = True
  233. # close mixup augmentation
  234. if self.train_loader.dataset.mixup_prob > 0.:
  235. print(' - Close < Mixup Augmentation > ...')
  236. self.train_loader.dataset.mixup_prob = 0.
  237. self.heavy_eval = True
  238. # close rotation augmentation
  239. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  240. print(' - Close < degress of rotation > ...')
  241. self.trans_cfg['degrees'] = 0.0
  242. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  243. print(' - Close < shear of rotation >...')
  244. self.trans_cfg['shear'] = 0.0
  245. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  246. print(' - Close < perspective of rotation > ...')
  247. self.trans_cfg['perspective'] = 0.0
  248. # close random affine
  249. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  250. print(' - Close < translate of affine > ...')
  251. self.trans_cfg['translate'] = 0.0
  252. if 'scale' in self.trans_cfg.keys():
  253. print(' - Close < scale of affine >...')
  254. self.trans_cfg['scale'] = [1.0, 1.0]
  255. # build a new transform for second stage
  256. print(' - Rebuild transforms ...')
  257. self.train_transform, self.trans_cfg = build_transform(
  258. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  259. self.train_loader.dataset.transform = self.train_transform
  260. def refine_targets(self, targets, min_box_size):
  261. # rescale targets
  262. for tgt in targets:
  263. boxes = tgt["boxes"].clone()
  264. labels = tgt["labels"].clone()
  265. # refine tgt
  266. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  267. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  268. keep = (min_tgt_size >= min_box_size)
  269. tgt["boxes"] = boxes[keep]
  270. tgt["labels"] = labels[keep]
  271. return targets
  272. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  273. """
  274. Deployed for Multi scale trick.
  275. """
  276. if isinstance(stride, int):
  277. max_stride = stride
  278. elif isinstance(stride, list):
  279. max_stride = max(stride)
  280. # During training phase, the shape of input image is square.
  281. old_img_size = images.shape[-1]
  282. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  283. new_img_size = new_img_size // max_stride * max_stride # size
  284. if new_img_size / old_img_size != 1:
  285. # interpolate
  286. images = torch.nn.functional.interpolate(
  287. input=images,
  288. size=new_img_size,
  289. mode='bilinear',
  290. align_corners=False)
  291. # rescale targets
  292. for tgt in targets:
  293. boxes = tgt["boxes"].clone()
  294. labels = tgt["labels"].clone()
  295. boxes = torch.clamp(boxes, 0, old_img_size)
  296. # rescale box
  297. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  298. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  299. # refine tgt
  300. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  301. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  302. keep = (min_tgt_size >= min_box_size)
  303. tgt["boxes"] = boxes[keep]
  304. tgt["labels"] = labels[keep]
  305. return images, targets, new_img_size
  306. # YOLOX Trainer
  307. class YoloxTrainer(object):
  308. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  309. # ------------------- basic parameters -------------------
  310. self.args = args
  311. self.epoch = 0
  312. self.best_map = -1.
  313. self.device = device
  314. self.criterion = criterion
  315. self.world_size = world_size
  316. self.grad_accumulate = args.grad_accumulate
  317. self.no_aug_epoch = args.no_aug_epoch
  318. self.heavy_eval = False
  319. # weak augmentatino stage
  320. self.second_stage = False
  321. self.third_stage = False
  322. self.second_stage_epoch = args.no_aug_epoch
  323. self.third_stage_epoch = args.no_aug_epoch // 2
  324. # path to save model
  325. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  326. os.makedirs(self.path_to_save, exist_ok=True)
  327. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  328. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  329. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  330. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  331. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  332. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  333. self.data_cfg = data_cfg
  334. self.model_cfg = model_cfg
  335. self.trans_cfg = trans_cfg
  336. # ---------------------------- Build Transform ----------------------------
  337. self.train_transform, self.trans_cfg = build_transform(
  338. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  339. self.val_transform, _ = build_transform(
  340. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  341. # ---------------------------- Build Dataset & Dataloader ----------------------------
  342. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  343. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  344. # ---------------------------- Build Evaluator ----------------------------
  345. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  346. # ---------------------------- Build Grad. Scaler ----------------------------
  347. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  348. # ---------------------------- Build Optimizer ----------------------------
  349. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  350. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  351. # ---------------------------- Build LR Scheduler ----------------------------
  352. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  353. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  354. if self.args.resume:
  355. self.lr_scheduler.step()
  356. # ---------------------------- Build Model-EMA ----------------------------
  357. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  358. print('Build ModelEMA ...')
  359. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  360. else:
  361. self.model_ema = None
  362. def train(self, model):
  363. for epoch in range(self.start_epoch, self.args.max_epoch):
  364. if self.args.distributed:
  365. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  366. # check second stage
  367. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  368. self.check_second_stage()
  369. # save model of the last mosaic epoch
  370. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  371. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  372. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  373. torch.save({'model': model.state_dict(),
  374. 'mAP': round(self.evaluator.map*100, 1),
  375. 'optimizer': self.optimizer.state_dict(),
  376. 'epoch': self.epoch,
  377. 'args': self.args},
  378. checkpoint_path)
  379. # check third stage
  380. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  381. self.check_third_stage()
  382. # save model of the last mosaic epoch
  383. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  384. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  385. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch + 1))
  386. torch.save({'model': model.state_dict(),
  387. 'mAP': round(self.evaluator.map*100, 1),
  388. 'optimizer': self.optimizer.state_dict(),
  389. 'epoch': self.epoch,
  390. 'args': self.args},
  391. checkpoint_path)
  392. # train one epoch
  393. self.epoch = epoch
  394. self.train_one_epoch(model)
  395. # eval one epoch
  396. if self.heavy_eval:
  397. model_eval = model.module if self.args.distributed else model
  398. self.eval(model_eval)
  399. else:
  400. model_eval = model.module if self.args.distributed else model
  401. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  402. self.eval(model_eval)
  403. def eval(self, model):
  404. # chech model
  405. model_eval = model if self.model_ema is None else self.model_ema.ema
  406. if distributed_utils.is_main_process():
  407. # check evaluator
  408. if self.evaluator is None:
  409. print('No evaluator ... save model and go on training.')
  410. print('Saving state, epoch: {}'.format(self.epoch + 1))
  411. weight_name = '{}_no_eval.pth'.format(self.args.model)
  412. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  413. torch.save({'model': model_eval.state_dict(),
  414. 'mAP': -1.,
  415. 'optimizer': self.optimizer.state_dict(),
  416. 'epoch': self.epoch,
  417. 'args': self.args},
  418. checkpoint_path)
  419. else:
  420. print('eval ...')
  421. # set eval mode
  422. model_eval.trainable = False
  423. model_eval.eval()
  424. # evaluate
  425. with torch.no_grad():
  426. self.evaluator.evaluate(model_eval)
  427. # save model
  428. cur_map = self.evaluator.map
  429. if cur_map > self.best_map:
  430. # update best-map
  431. self.best_map = cur_map
  432. # save model
  433. print('Saving state, epoch:', self.epoch + 1)
  434. weight_name = '{}_best.pth'.format(self.args.model)
  435. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  436. torch.save({'model': model_eval.state_dict(),
  437. 'mAP': round(self.best_map*100, 1),
  438. 'optimizer': self.optimizer.state_dict(),
  439. 'epoch': self.epoch,
  440. 'args': self.args},
  441. checkpoint_path)
  442. # set train mode.
  443. model_eval.trainable = True
  444. model_eval.train()
  445. if self.args.distributed:
  446. # wait for all processes to synchronize
  447. dist.barrier()
  448. def train_one_epoch(self, model):
  449. # basic parameters
  450. epoch_size = len(self.train_loader)
  451. img_size = self.args.img_size
  452. t0 = time.time()
  453. nw = epoch_size * self.args.wp_epoch
  454. # Train one epoch
  455. for iter_i, (images, targets) in enumerate(self.train_loader):
  456. ni = iter_i + self.epoch * epoch_size
  457. # Warmup
  458. if ni <= nw:
  459. xi = [0, nw] # x interp
  460. for j, x in enumerate(self.optimizer.param_groups):
  461. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  462. x['lr'] = np.interp(
  463. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  464. if 'momentum' in x:
  465. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  466. # To device
  467. images = images.to(self.device, non_blocking=True).float() / 255.
  468. # Multi scale
  469. if self.args.multi_scale and ni % 10 == 0:
  470. images, targets, img_size = self.rescale_image_targets(
  471. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  472. else:
  473. targets = self.refine_targets(targets, self.args.min_box_size)
  474. # Visualize train targets
  475. if self.args.vis_tgt:
  476. vis_data(images*255, targets)
  477. # Inference
  478. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  479. outputs = model(images)
  480. # Compute loss
  481. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  482. losses = loss_dict['losses']
  483. # Grad Accu
  484. if self.grad_accumulate > 1:
  485. losses /= self.grad_accumulate
  486. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  487. # Backward
  488. self.scaler.scale(losses).backward()
  489. # Optimize
  490. if ni % self.grad_accumulate == 0:
  491. self.scaler.step(self.optimizer)
  492. self.scaler.update()
  493. self.optimizer.zero_grad()
  494. # ema
  495. if self.model_ema is not None:
  496. self.model_ema.update(model)
  497. # Logs
  498. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  499. t1 = time.time()
  500. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  501. # basic infor
  502. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  503. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  504. log += '[lr: {:.6f}]'.format(cur_lr[2])
  505. # loss infor
  506. for k in loss_dict_reduced.keys():
  507. loss_val = loss_dict_reduced[k]
  508. if k == 'losses':
  509. loss_val *= self.grad_accumulate
  510. log += '[{}: {:.2f}]'.format(k, loss_val)
  511. # other infor
  512. log += '[time: {:.2f}]'.format(t1 - t0)
  513. log += '[size: {}]'.format(img_size)
  514. # print log infor
  515. print(log, flush=True)
  516. t0 = time.time()
  517. # LR Schedule
  518. if not self.second_stage:
  519. self.lr_scheduler.step()
  520. def check_second_stage(self):
  521. # set second stage
  522. print('============== Second stage of Training ==============')
  523. self.second_stage = True
  524. # close mosaic augmentation
  525. if self.train_loader.dataset.mosaic_prob > 0.:
  526. print(' - Close < Mosaic Augmentation > ...')
  527. self.train_loader.dataset.mosaic_prob = 0.
  528. self.heavy_eval = True
  529. # close mixup augmentation
  530. if self.train_loader.dataset.mixup_prob > 0.:
  531. print(' - Close < Mixup Augmentation > ...')
  532. self.train_loader.dataset.mixup_prob = 0.
  533. self.heavy_eval = True
  534. # close rotation augmentation
  535. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  536. print(' - Close < degress of rotation > ...')
  537. self.trans_cfg['degrees'] = 0.0
  538. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  539. print(' - Close < shear of rotation >...')
  540. self.trans_cfg['shear'] = 0.0
  541. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  542. print(' - Close < perspective of rotation > ...')
  543. self.trans_cfg['perspective'] = 0.0
  544. # build a new transform for second stage
  545. print(' - Rebuild transforms ...')
  546. self.train_transform, self.trans_cfg = build_transform(
  547. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  548. self.train_loader.dataset.transform = self.train_transform
  549. def check_third_stage(self):
  550. # set third stage
  551. print('============== Third stage of Training ==============')
  552. self.third_stage = True
  553. # close random affine
  554. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  555. print(' - Close < translate of affine > ...')
  556. self.trans_cfg['translate'] = 0.0
  557. if 'scale' in self.trans_cfg.keys():
  558. print(' - Close < scale of affine >...')
  559. self.trans_cfg['scale'] = [1.0, 1.0]
  560. # build a new transform for second stage
  561. print(' - Rebuild transforms ...')
  562. self.train_transform, self.trans_cfg = build_transform(
  563. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  564. self.train_loader.dataset.transform = self.train_transform
  565. def refine_targets(self, targets, min_box_size):
  566. # rescale targets
  567. for tgt in targets:
  568. boxes = tgt["boxes"].clone()
  569. labels = tgt["labels"].clone()
  570. # refine tgt
  571. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  572. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  573. keep = (min_tgt_size >= min_box_size)
  574. tgt["boxes"] = boxes[keep]
  575. tgt["labels"] = labels[keep]
  576. return targets
  577. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  578. """
  579. Deployed for Multi scale trick.
  580. """
  581. if isinstance(stride, int):
  582. max_stride = stride
  583. elif isinstance(stride, list):
  584. max_stride = max(stride)
  585. # During training phase, the shape of input image is square.
  586. old_img_size = images.shape[-1]
  587. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  588. new_img_size = new_img_size // max_stride * max_stride # size
  589. if new_img_size / old_img_size != 1:
  590. # interpolate
  591. images = torch.nn.functional.interpolate(
  592. input=images,
  593. size=new_img_size,
  594. mode='bilinear',
  595. align_corners=False)
  596. # rescale targets
  597. for tgt in targets:
  598. boxes = tgt["boxes"].clone()
  599. labels = tgt["labels"].clone()
  600. boxes = torch.clamp(boxes, 0, old_img_size)
  601. # rescale box
  602. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  603. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  604. # refine tgt
  605. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  606. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  607. keep = (min_tgt_size >= min_box_size)
  608. tgt["boxes"] = boxes[keep]
  609. tgt["labels"] = labels[keep]
  610. return images, targets, new_img_size
  611. # RTCDet Trainer
  612. class RTCTrainer(object):
  613. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  614. # ------------------- basic parameters -------------------
  615. self.args = args
  616. self.epoch = 0
  617. self.best_map = -1.
  618. self.device = device
  619. self.criterion = criterion
  620. self.world_size = world_size
  621. self.grad_accumulate = args.grad_accumulate
  622. self.clip_grad = 35
  623. self.heavy_eval = False
  624. # weak augmentatino stage
  625. self.second_stage = False
  626. self.third_stage = False
  627. self.second_stage_epoch = args.no_aug_epoch
  628. self.third_stage_epoch = args.no_aug_epoch // 2
  629. # path to save model
  630. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  631. os.makedirs(self.path_to_save, exist_ok=True)
  632. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  633. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  634. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  635. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  636. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  637. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  638. self.data_cfg = data_cfg
  639. self.model_cfg = model_cfg
  640. self.trans_cfg = trans_cfg
  641. # ---------------------------- Build Transform ----------------------------
  642. self.train_transform, self.trans_cfg = build_transform(
  643. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  644. self.val_transform, _ = build_transform(
  645. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  646. # ---------------------------- Build Dataset & Dataloader ----------------------------
  647. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  648. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  649. # ---------------------------- Build Evaluator ----------------------------
  650. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  651. # ---------------------------- Build Grad. Scaler ----------------------------
  652. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  653. # ---------------------------- Build Optimizer ----------------------------
  654. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  655. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  656. # ---------------------------- Build LR Scheduler ----------------------------
  657. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  658. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  659. if self.args.resume:
  660. self.lr_scheduler.step()
  661. # ---------------------------- Build Model-EMA ----------------------------
  662. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  663. print('Build ModelEMA ...')
  664. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  665. else:
  666. self.model_ema = None
  667. def train(self, model):
  668. for epoch in range(self.start_epoch, self.args.max_epoch):
  669. if self.args.distributed:
  670. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  671. # check second stage
  672. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  673. self.check_second_stage()
  674. # save model of the last mosaic epoch
  675. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  676. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  677. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  678. torch.save({'model': model.state_dict(),
  679. 'mAP': round(self.evaluator.map*100, 1),
  680. 'optimizer': self.optimizer.state_dict(),
  681. 'epoch': self.epoch,
  682. 'args': self.args},
  683. checkpoint_path)
  684. # check third stage
  685. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  686. self.check_third_stage()
  687. # save model of the last mosaic epoch
  688. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  689. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  690. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch + 1))
  691. torch.save({'model': model.state_dict(),
  692. 'mAP': round(self.evaluator.map*100, 1),
  693. 'optimizer': self.optimizer.state_dict(),
  694. 'epoch': self.epoch,
  695. 'args': self.args},
  696. checkpoint_path)
  697. # train one epoch
  698. self.epoch = epoch
  699. self.train_one_epoch(model)
  700. # eval one epoch
  701. if self.heavy_eval:
  702. model_eval = model.module if self.args.distributed else model
  703. self.eval(model_eval)
  704. else:
  705. model_eval = model.module if self.args.distributed else model
  706. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  707. self.eval(model_eval)
  708. def eval(self, model):
  709. # chech model
  710. model_eval = model if self.model_ema is None else self.model_ema.ema
  711. if distributed_utils.is_main_process():
  712. # check evaluator
  713. if self.evaluator is None:
  714. print('No evaluator ... save model and go on training.')
  715. print('Saving state, epoch: {}'.format(self.epoch + 1))
  716. weight_name = '{}_no_eval.pth'.format(self.args.model)
  717. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  718. torch.save({'model': model_eval.state_dict(),
  719. 'mAP': -1.,
  720. 'optimizer': self.optimizer.state_dict(),
  721. 'epoch': self.epoch,
  722. 'args': self.args},
  723. checkpoint_path)
  724. else:
  725. print('eval ...')
  726. # set eval mode
  727. model_eval.trainable = False
  728. model_eval.eval()
  729. # evaluate
  730. with torch.no_grad():
  731. self.evaluator.evaluate(model_eval)
  732. # save model
  733. cur_map = self.evaluator.map
  734. if cur_map > self.best_map:
  735. # update best-map
  736. self.best_map = cur_map
  737. # save model
  738. print('Saving state, epoch:', self.epoch + 1)
  739. weight_name = '{}_best.pth'.format(self.args.model)
  740. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  741. torch.save({'model': model_eval.state_dict(),
  742. 'mAP': round(self.best_map*100, 1),
  743. 'optimizer': self.optimizer.state_dict(),
  744. 'epoch': self.epoch,
  745. 'args': self.args},
  746. checkpoint_path)
  747. # set train mode.
  748. model_eval.trainable = True
  749. model_eval.train()
  750. if self.args.distributed:
  751. # wait for all processes to synchronize
  752. dist.barrier()
  753. def train_one_epoch(self, model):
  754. # basic parameters
  755. epoch_size = len(self.train_loader)
  756. img_size = self.args.img_size
  757. t0 = time.time()
  758. nw = epoch_size * self.args.wp_epoch
  759. # Train one epoch
  760. for iter_i, (images, targets) in enumerate(self.train_loader):
  761. ni = iter_i + self.epoch * epoch_size
  762. # Warmup
  763. if ni <= nw:
  764. xi = [0, nw] # x interp
  765. for j, x in enumerate(self.optimizer.param_groups):
  766. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  767. x['lr'] = np.interp(
  768. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  769. if 'momentum' in x:
  770. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  771. # To device
  772. images = images.to(self.device, non_blocking=True).float() / 255.
  773. # Multi scale
  774. if self.args.multi_scale:
  775. images, targets, img_size = self.rescale_image_targets(
  776. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  777. else:
  778. targets = self.refine_targets(targets, self.args.min_box_size)
  779. # Visualize train targets
  780. if self.args.vis_tgt:
  781. vis_data(images*255, targets)
  782. # Inference
  783. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  784. outputs = model(images)
  785. # Compute loss
  786. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  787. losses = loss_dict['losses']
  788. # Grad Accumulate
  789. if self.grad_accumulate > 1:
  790. losses /= self.grad_accumulate
  791. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  792. # Backward
  793. self.scaler.scale(losses).backward()
  794. # Optimize
  795. if ni % self.grad_accumulate == 0:
  796. grad_norm = None
  797. if self.clip_grad > 0:
  798. # unscale gradients
  799. self.scaler.unscale_(self.optimizer)
  800. # clip gradients
  801. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  802. # optimizer.step
  803. self.scaler.step(self.optimizer)
  804. self.scaler.update()
  805. self.optimizer.zero_grad()
  806. # ema
  807. if self.model_ema is not None:
  808. self.model_ema.update(model)
  809. # Logs
  810. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  811. t1 = time.time()
  812. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  813. # basic infor
  814. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  815. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  816. log += '[lr: {:.6f}]'.format(cur_lr[2])
  817. # loss infor
  818. for k in loss_dict_reduced.keys():
  819. loss_val = loss_dict_reduced[k]
  820. if k == 'losses':
  821. loss_val *= self.grad_accumulate
  822. log += '[{}: {:.2f}]'.format(k, loss_val)
  823. # other infor
  824. log += '[grad_norm: {:.2f}]'.format(grad_norm)
  825. log += '[time: {:.2f}]'.format(t1 - t0)
  826. log += '[size: {}]'.format(img_size)
  827. # print log infor
  828. print(log, flush=True)
  829. t0 = time.time()
  830. # LR Schedule
  831. if not self.second_stage:
  832. self.lr_scheduler.step()
  833. def refine_targets(self, targets, min_box_size):
  834. # rescale targets
  835. for tgt in targets:
  836. boxes = tgt["boxes"].clone()
  837. labels = tgt["labels"].clone()
  838. # refine tgt
  839. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  840. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  841. keep = (min_tgt_size >= min_box_size)
  842. tgt["boxes"] = boxes[keep]
  843. tgt["labels"] = labels[keep]
  844. return targets
  845. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  846. """
  847. Deployed for Multi scale trick.
  848. """
  849. if isinstance(stride, int):
  850. max_stride = stride
  851. elif isinstance(stride, list):
  852. max_stride = max(stride)
  853. # During training phase, the shape of input image is square.
  854. old_img_size = images.shape[-1]
  855. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  856. new_img_size = new_img_size // max_stride * max_stride # size
  857. if new_img_size / old_img_size != 1:
  858. # interpolate
  859. images = torch.nn.functional.interpolate(
  860. input=images,
  861. size=new_img_size,
  862. mode='bilinear',
  863. align_corners=False)
  864. # rescale targets
  865. for tgt in targets:
  866. boxes = tgt["boxes"].clone()
  867. labels = tgt["labels"].clone()
  868. boxes = torch.clamp(boxes, 0, old_img_size)
  869. # rescale box
  870. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  871. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  872. # refine tgt
  873. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  874. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  875. keep = (min_tgt_size >= min_box_size)
  876. tgt["boxes"] = boxes[keep]
  877. tgt["labels"] = labels[keep]
  878. return images, targets, new_img_size
  879. def check_second_stage(self):
  880. # set second stage
  881. print('============== Second stage of Training ==============')
  882. self.second_stage = True
  883. # close mosaic augmentation
  884. if self.train_loader.dataset.mosaic_prob > 0.:
  885. print(' - Close < Mosaic Augmentation > ...')
  886. self.train_loader.dataset.mosaic_prob = 0.
  887. self.heavy_eval = True
  888. # close mixup augmentation
  889. if self.train_loader.dataset.mixup_prob > 0.:
  890. print(' - Close < Mixup Augmentation > ...')
  891. self.train_loader.dataset.mixup_prob = 0.
  892. self.heavy_eval = True
  893. # close rotation augmentation
  894. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  895. print(' - Close < degress of rotation > ...')
  896. self.trans_cfg['degrees'] = 0.0
  897. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  898. print(' - Close < shear of rotation >...')
  899. self.trans_cfg['shear'] = 0.0
  900. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  901. print(' - Close < perspective of rotation > ...')
  902. self.trans_cfg['perspective'] = 0.0
  903. # build a new transform for second stage
  904. print(' - Rebuild transforms ...')
  905. self.train_transform, self.trans_cfg = build_transform(
  906. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  907. self.train_loader.dataset.transform = self.train_transform
  908. def check_third_stage(self):
  909. # set third stage
  910. print('============== Third stage of Training ==============')
  911. self.third_stage = True
  912. # close random affine
  913. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  914. print(' - Close < translate of affine > ...')
  915. self.trans_cfg['translate'] = 0.0
  916. if 'scale' in self.trans_cfg.keys():
  917. print(' - Close < scale of affine >...')
  918. self.trans_cfg['scale'] = [1.0, 1.0]
  919. # build a new transform for second stage
  920. print(' - Rebuild transforms ...')
  921. self.train_transform, self.trans_cfg = build_transform(
  922. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  923. self.train_loader.dataset.transform = self.train_transform
  924. # Trainer for DETR
  925. class DetrTrainer(object):
  926. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  927. # ------------------- basic parameters -------------------
  928. self.args = args
  929. self.epoch = 0
  930. self.best_map = -1.
  931. self.last_opt_step = 0
  932. self.no_aug_epoch = args.no_aug_epoch
  933. self.clip_grad = -1
  934. self.device = device
  935. self.criterion = criterion
  936. self.world_size = world_size
  937. self.second_stage = False
  938. self.heavy_eval = False
  939. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
  940. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  941. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  942. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  943. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  944. self.data_cfg = data_cfg
  945. self.model_cfg = model_cfg
  946. self.trans_cfg = trans_cfg
  947. # ---------------------------- Build Transform ----------------------------
  948. self.train_transform, self.trans_cfg = build_transform(
  949. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  950. self.val_transform, _ = build_transform(
  951. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  952. # ---------------------------- Build Dataset & Dataloader ----------------------------
  953. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  954. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  955. # ---------------------------- Build Evaluator ----------------------------
  956. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  957. # ---------------------------- Build Grad. Scaler ----------------------------
  958. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  959. # ---------------------------- Build Optimizer ----------------------------
  960. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  961. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  962. # ---------------------------- Build LR Scheduler ----------------------------
  963. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  964. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  965. if self.args.resume:
  966. self.lr_scheduler.step()
  967. # ---------------------------- Build Model-EMA ----------------------------
  968. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  969. print('Build ModelEMA ...')
  970. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  971. else:
  972. self.model_ema = None
  973. def check_second_stage(self):
  974. # set second stage
  975. print('============== Second stage of Training ==============')
  976. self.second_stage = True
  977. # close mosaic augmentation
  978. if self.train_loader.dataset.mosaic_prob > 0.:
  979. print(' - Close < Mosaic Augmentation > ...')
  980. self.train_loader.dataset.mosaic_prob = 0.
  981. self.heavy_eval = True
  982. # close mixup augmentation
  983. if self.train_loader.dataset.mixup_prob > 0.:
  984. print(' - Close < Mixup Augmentation > ...')
  985. self.train_loader.dataset.mixup_prob = 0.
  986. self.heavy_eval = True
  987. # close rotation augmentation
  988. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  989. print(' - Close < degress of rotation > ...')
  990. self.trans_cfg['degrees'] = 0.0
  991. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  992. print(' - Close < shear of rotation >...')
  993. self.trans_cfg['shear'] = 0.0
  994. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  995. print(' - Close < perspective of rotation > ...')
  996. self.trans_cfg['perspective'] = 0.0
  997. # build a new transform for second stage
  998. print(' - Rebuild transforms ...')
  999. self.train_transform, self.trans_cfg = build_transform(
  1000. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1001. self.train_loader.dataset.transform = self.train_transform
  1002. def train(self, model):
  1003. for epoch in range(self.start_epoch, self.args.max_epoch):
  1004. if self.args.distributed:
  1005. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1006. # check second stage
  1007. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  1008. self.check_second_stage()
  1009. # train one epoch
  1010. self.epoch = epoch
  1011. self.train_one_epoch(model)
  1012. # eval one epoch
  1013. if self.heavy_eval:
  1014. model_eval = model.module if self.args.distributed else model
  1015. self.eval(model_eval)
  1016. else:
  1017. model_eval = model.module if self.args.distributed else model
  1018. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1019. self.eval(model_eval)
  1020. def eval(self, model):
  1021. # chech model
  1022. model_eval = model if self.model_ema is None else self.model_ema.ema
  1023. # path to save model
  1024. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  1025. os.makedirs(path_to_save, exist_ok=True)
  1026. if distributed_utils.is_main_process():
  1027. # check evaluator
  1028. if self.evaluator is None:
  1029. print('No evaluator ... save model and go on training.')
  1030. print('Saving state, epoch: {}'.format(self.epoch + 1))
  1031. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1032. checkpoint_path = os.path.join(path_to_save, weight_name)
  1033. torch.save({'model': model_eval.state_dict(),
  1034. 'mAP': -1.,
  1035. 'optimizer': self.optimizer.state_dict(),
  1036. 'epoch': self.epoch,
  1037. 'args': self.args},
  1038. checkpoint_path)
  1039. else:
  1040. print('eval ...')
  1041. # set eval mode
  1042. model_eval.trainable = False
  1043. model_eval.eval()
  1044. # evaluate
  1045. with torch.no_grad():
  1046. self.evaluator.evaluate(model_eval)
  1047. # save model
  1048. cur_map = self.evaluator.map
  1049. if cur_map > self.best_map:
  1050. # update best-map
  1051. self.best_map = cur_map
  1052. # save model
  1053. print('Saving state, epoch:', self.epoch + 1)
  1054. weight_name = '{}_best.pth'.format(self.args.model)
  1055. checkpoint_path = os.path.join(path_to_save, weight_name)
  1056. torch.save({'model': model_eval.state_dict(),
  1057. 'mAP': round(self.best_map*100, 1),
  1058. 'optimizer': self.optimizer.state_dict(),
  1059. 'epoch': self.epoch,
  1060. 'args': self.args},
  1061. checkpoint_path)
  1062. # set train mode.
  1063. model_eval.trainable = True
  1064. model_eval.train()
  1065. if self.args.distributed:
  1066. # wait for all processes to synchronize
  1067. dist.barrier()
  1068. def train_one_epoch(self, model):
  1069. # basic parameters
  1070. epoch_size = len(self.train_loader)
  1071. img_size = self.args.img_size
  1072. t0 = time.time()
  1073. nw = epoch_size * self.args.wp_epoch
  1074. # train one epoch
  1075. for iter_i, (images, targets) in enumerate(self.train_loader):
  1076. ni = iter_i + self.epoch * epoch_size
  1077. # Warmup
  1078. if ni <= nw:
  1079. xi = [0, nw] # x interp
  1080. for j, x in enumerate(self.optimizer.param_groups):
  1081. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1082. x['lr'] = np.interp(
  1083. ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1084. if 'momentum' in x:
  1085. x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
  1086. # To device
  1087. images = images.to(self.device, non_blocking=True).float() / 255.
  1088. # Multi scale
  1089. if self.args.multi_scale:
  1090. images, targets, img_size = self.rescale_image_targets(
  1091. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1092. else:
  1093. targets = self.refine_targets(targets, self.args.min_box_size, img_size)
  1094. # Visualize targets
  1095. if self.args.vis_tgt:
  1096. vis_data(images*255, targets)
  1097. # Inference
  1098. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1099. outputs = model(images)
  1100. # Compute loss
  1101. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  1102. losses = loss_dict['losses']
  1103. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1104. # Backward
  1105. self.scaler.scale(losses).backward()
  1106. # Optimize
  1107. if self.clip_grad > 0:
  1108. # unscale gradients
  1109. self.scaler.unscale_(self.optimizer)
  1110. # clip gradients
  1111. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1112. self.scaler.step(self.optimizer)
  1113. self.scaler.update()
  1114. self.optimizer.zero_grad()
  1115. # Model EMA
  1116. if self.model_ema is not None:
  1117. self.model_ema.update(model)
  1118. self.last_opt_step = ni
  1119. # Log
  1120. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1121. t1 = time.time()
  1122. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1123. # basic infor
  1124. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1125. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1126. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1127. # loss infor
  1128. for k in loss_dict_reduced.keys():
  1129. if self.args.vis_aux_loss:
  1130. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1131. else:
  1132. if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
  1133. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1134. # other infor
  1135. log += '[time: {:.2f}]'.format(t1 - t0)
  1136. log += '[size: {}]'.format(img_size)
  1137. # print log infor
  1138. print(log, flush=True)
  1139. t0 = time.time()
  1140. # LR Scheduler
  1141. self.lr_scheduler.step()
  1142. def refine_targets(self, targets, min_box_size, img_size):
  1143. # rescale targets
  1144. for tgt in targets:
  1145. boxes = tgt["boxes"]
  1146. labels = tgt["labels"]
  1147. # refine tgt
  1148. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1149. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1150. keep = (min_tgt_size >= min_box_size)
  1151. # xyxy -> cxcywh
  1152. new_boxes = torch.zeros_like(boxes)
  1153. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1154. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1155. # normalize
  1156. new_boxes /= img_size
  1157. del boxes
  1158. tgt["boxes"] = new_boxes[keep]
  1159. tgt["labels"] = labels[keep]
  1160. return targets
  1161. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1162. """
  1163. Deployed for Multi scale trick.
  1164. """
  1165. if isinstance(stride, int):
  1166. max_stride = stride
  1167. elif isinstance(stride, list):
  1168. max_stride = max(stride)
  1169. # During training phase, the shape of input image is square.
  1170. old_img_size = images.shape[-1]
  1171. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1172. new_img_size = new_img_size // max_stride * max_stride # size
  1173. if new_img_size / old_img_size != 1:
  1174. # interpolate
  1175. images = torch.nn.functional.interpolate(
  1176. input=images,
  1177. size=new_img_size,
  1178. mode='bilinear',
  1179. align_corners=False)
  1180. # rescale targets
  1181. for tgt in targets:
  1182. boxes = tgt["boxes"].clone()
  1183. labels = tgt["labels"].clone()
  1184. boxes = torch.clamp(boxes, 0, old_img_size)
  1185. # rescale box
  1186. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1187. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1188. # refine tgt
  1189. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1190. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1191. keep = (min_tgt_size >= min_box_size)
  1192. # xyxy -> cxcywh
  1193. new_boxes = torch.zeros_like(boxes)
  1194. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1195. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1196. # normalize
  1197. new_boxes /= new_img_size
  1198. del boxes
  1199. tgt["boxes"] = new_boxes[keep]
  1200. tgt["labels"] = labels[keep]
  1201. return images, targets, new_img_size
  1202. # Build Trainer
  1203. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1204. if model_cfg['trainer_type'] == 'yolov8':
  1205. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1206. elif model_cfg['trainer_type'] == 'yolox':
  1207. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1208. elif model_cfg['trainer_type'] == 'rtcdet':
  1209. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1210. elif model_cfg['trainer_type'] == 'detr':
  1211. return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1212. else:
  1213. raise NotImplementedError