rtdetr.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .rtdetr_encoder import build_image_encoder
  5. from .rtdetr_decoder import build_transformer
  6. except:
  7. from rtdetr_encoder import build_image_encoder
  8. from rtdetr_decoder import build_transformer
  9. # Real-time Transformer-based Object Detector
  10. class RT_DETR(nn.Module):
  11. def __init__(self,
  12. cfg,
  13. num_classes = 80,
  14. conf_thresh = 0.1,
  15. topk = 300,
  16. deploy = False,
  17. no_multi_labels = False,
  18. ):
  19. super().__init__()
  20. # ----------- Basic setting -----------
  21. self.num_classes = num_classes
  22. self.num_topk = topk
  23. self.conf_thresh = conf_thresh
  24. self.no_multi_labels = no_multi_labels
  25. self.deploy = deploy
  26. # scale hidden channels by width_factor
  27. cfg['hidden_dim'] = round(cfg['hidden_dim'] * cfg['width'])
  28. # ----------- Network setting -----------
  29. ## Image encoder
  30. self.image_encoder = build_image_encoder(cfg)
  31. self.fpn_dims = self.image_encoder.fpn_dims
  32. ## Detect decoder
  33. self.detect_decoder = build_transformer(cfg, self.fpn_dims, num_classes, return_intermediate=self.training)
  34. def post_process(self, box_pred, cls_pred):
  35. # xyxy -> bwbh
  36. box_preds_x1y1 = box_pred[..., :2] - 0.5 * box_pred[..., 2:]
  37. box_preds_x2y2 = box_pred[..., :2] + 0.5 * box_pred[..., 2:]
  38. box_pred = torch.cat([box_preds_x1y1, box_preds_x2y2], dim=-1)
  39. cls_pred = cls_pred[0]
  40. box_pred = box_pred[0]
  41. if self.no_multi_labels:
  42. # [M,]
  43. scores, labels = torch.max(cls_pred.sigmoid(), dim=1)
  44. # Keep top k top scoring indices only.
  45. num_topk = min(self.num_topk, box_pred.size(0))
  46. # Topk candidates
  47. predicted_prob, topk_idxs = scores.sort(descending=True)
  48. topk_scores = predicted_prob[:num_topk]
  49. topk_idxs = topk_idxs[:num_topk]
  50. # Filter out the proposals with low confidence score
  51. keep_idxs = topk_scores > self.conf_thresh
  52. topk_idxs = topk_idxs[keep_idxs]
  53. # Top-k results
  54. topk_scores = topk_scores[keep_idxs]
  55. topk_labels = labels[topk_idxs]
  56. topk_bboxes = box_pred[topk_idxs]
  57. else:
  58. # Top-k select
  59. cls_pred = cls_pred.flatten().sigmoid_()
  60. box_pred = box_pred
  61. # Keep top k top scoring indices only.
  62. num_topk = min(self.num_topk, box_pred.size(0))
  63. # Topk candidates
  64. predicted_prob, topk_idxs = cls_pred.sort(descending=True)
  65. topk_scores = predicted_prob[:num_topk]
  66. topk_idxs = topk_idxs[:self.num_topk]
  67. # Filter out the proposals with low confidence score
  68. keep_idxs = topk_scores > self.conf_thresh
  69. scores = topk_scores[keep_idxs]
  70. topk_idxs = topk_idxs[keep_idxs]
  71. topk_box_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  72. ## Top-k results
  73. topk_scores = predicted_prob[:self.num_topk]
  74. topk_labels = topk_idxs % self.num_classes
  75. topk_bboxes = box_pred[topk_box_idxs]
  76. return topk_bboxes, topk_scores, topk_labels
  77. def forward(self, x, targets=None):
  78. # ----------- Image Encoder -----------
  79. pyramid_feats = self.image_encoder(x)
  80. # ----------- Transformer -----------
  81. transformer_outputs = self.detect_decoder(pyramid_feats, targets)
  82. if self.training:
  83. return transformer_outputs
  84. else:
  85. img_h, img_w = x.shape[2:]
  86. pred_boxes, pred_logits = transformer_outputs[0], transformer_outputs[1]
  87. box_pred = pred_boxes[-1]
  88. cls_pred = pred_logits[-1]
  89. # rescale bbox
  90. box_pred[..., [0, 2]] *= img_h
  91. box_pred[..., [1, 3]] *= img_w
  92. # post-process
  93. bboxes, scores, labels = self.post_process(box_pred, cls_pred)
  94. outputs = {
  95. "scores": scores.cpu().numpy(),
  96. "labels": labels.cpu().numpy(),
  97. "bboxes": bboxes.cpu().numpy(),
  98. }
  99. return outputs
  100. if __name__ == '__main__':
  101. import time
  102. from thop import profile
  103. from loss import build_criterion
  104. # Model config
  105. cfg = {
  106. 'width': 1.0,
  107. 'depth': 1.0,
  108. 'out_stride': [8, 16, 32],
  109. # Image Encoder - Backbone
  110. 'backbone': 'resnet18',
  111. 'backbone_norm': 'BN',
  112. 'res5_dilation': False,
  113. 'pretrained': True,
  114. 'pretrained_weight': 'imagenet1k_v1',
  115. 'freeze_at': 0,
  116. 'freeze_stem_only': False,
  117. 'out_stride': [8, 16, 32],
  118. 'max_stride': 32,
  119. # Image Encoder - FPN
  120. 'fpn': 'hybrid_encoder',
  121. 'fpn_act': 'silu',
  122. 'fpn_norm': 'BN',
  123. 'fpn_depthwise': False,
  124. 'hidden_dim': 256,
  125. 'en_num_heads': 8,
  126. 'en_num_layers': 1,
  127. 'en_mlp_ratio': 4.0,
  128. 'en_dropout': 0.0,
  129. 'pe_temperature': 10000.,
  130. 'en_act': 'gelu',
  131. # Transformer Decoder
  132. 'transformer': 'rtdetr_transformer',
  133. 'hidden_dim': 256,
  134. 'de_num_heads': 8,
  135. 'de_num_layers': 3,
  136. 'de_mlp_ratio': 4.0,
  137. 'de_dropout': 0.0,
  138. 'de_act': 'gelu',
  139. 'de_num_points': 4,
  140. 'num_queries': 300,
  141. 'learnt_init_query': False,
  142. 'pe_temperature': 10000.,
  143. 'dn_num_denoising': 100,
  144. 'dn_label_noise_ratio': 0.5,
  145. 'dn_box_noise_scale': 1,
  146. # Head
  147. 'det_head': 'dino_head',
  148. # Matcher
  149. 'matcher_hpy': {'cost_class': 2.0,
  150. 'cost_bbox': 5.0,
  151. 'cost_giou': 2.0,},
  152. # Loss
  153. 'use_vfl': True,
  154. 'loss_coeff': {'class': 1,
  155. 'bbox': 5,
  156. 'giou': 2,
  157. 'no_object': 0.1,},
  158. }
  159. bs = 1
  160. # Create a batch of images & targets
  161. image = torch.randn(bs, 3, 640, 640)
  162. targets = [{
  163. 'labels': torch.tensor([2, 4, 5, 8]).long(),
  164. 'boxes': torch.tensor([[0, 0, 10, 10], [12, 23, 56, 70], [0, 10, 20, 30], [50, 60, 55, 150]]).float() / 640.
  165. }] * bs
  166. # Create model
  167. model = RT_DETR(cfg, num_classes=20)
  168. model.train()
  169. # Create criterion
  170. criterion = build_criterion(cfg, num_classes=20)
  171. # Model inference
  172. t0 = time.time()
  173. outputs = model(image, targets)
  174. t1 = time.time()
  175. print('Infer time: ', t1 - t0)
  176. # Compute loss
  177. loss = criterion(*outputs, targets)
  178. for k in loss.keys():
  179. print("{} : {}".format(k, loss[k].item()))
  180. print('==============================')
  181. model.eval()
  182. flops, params = profile(model, inputs=(image, ), verbose=False)
  183. print('==============================')
  184. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  185. print('Params : {:.2f} M'.format(params / 1e6))