engine.py 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8-style Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  34. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  35. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  36. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  37. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  38. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  39. self.data_cfg = data_cfg
  40. self.model_cfg = model_cfg
  41. self.trans_cfg = trans_cfg
  42. # ---------------------------- Build Transform ----------------------------
  43. self.train_transform, self.trans_cfg = build_transform(
  44. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  45. self.val_transform, _ = build_transform(
  46. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  47. # ---------------------------- Build Dataset & Dataloader ----------------------------
  48. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  49. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  50. # ---------------------------- Build Evaluator ----------------------------
  51. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  52. # ---------------------------- Build Grad. Scaler ----------------------------
  53. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  54. # ---------------------------- Build Optimizer ----------------------------
  55. accumulate = max(1, round(64 / self.args.batch_size))
  56. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  57. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  58. # ---------------------------- Build LR Scheduler ----------------------------
  59. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  60. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  61. if self.args.resume:
  62. self.lr_scheduler.step()
  63. # ---------------------------- Build Model-EMA ----------------------------
  64. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  65. print('Build ModelEMA ...')
  66. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  67. else:
  68. self.model_ema = None
  69. def check_second_stage(self):
  70. # set second stage
  71. print('============== Second stage of Training ==============')
  72. self.second_stage = True
  73. # close mosaic augmentation
  74. if self.train_loader.dataset.mosaic_prob > 0.:
  75. print(' - Close < Mosaic Augmentation > ...')
  76. self.train_loader.dataset.mosaic_prob = 0.
  77. self.heavy_eval = True
  78. # close mixup augmentation
  79. if self.train_loader.dataset.mixup_prob > 0.:
  80. print(' - Close < Mixup Augmentation > ...')
  81. self.train_loader.dataset.mixup_prob = 0.
  82. self.heavy_eval = True
  83. # close rotation augmentation
  84. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  85. print(' - Close < degress of rotation > ...')
  86. self.trans_cfg['degrees'] = 0.0
  87. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  88. print(' - Close < shear of rotation >...')
  89. self.trans_cfg['shear'] = 0.0
  90. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  91. print(' - Close < perspective of rotation > ...')
  92. self.trans_cfg['perspective'] = 0.0
  93. # build a new transform for second stage
  94. print(' - Rebuild transforms ...')
  95. self.train_transform, self.trans_cfg = build_transform(
  96. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  97. self.train_loader.dataset.transform = self.train_transform
  98. def train(self, model):
  99. for epoch in range(self.start_epoch, self.args.max_epoch):
  100. if self.args.distributed:
  101. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  102. # check second stage
  103. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  104. self.check_second_stage()
  105. # train one epoch
  106. self.epoch = epoch
  107. self.train_one_epoch(model)
  108. # eval one epoch
  109. if self.heavy_eval:
  110. model_eval = model.module if self.args.distributed else model
  111. self.eval(model_eval)
  112. else:
  113. model_eval = model.module if self.args.distributed else model
  114. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  115. self.eval(model_eval)
  116. def eval(self, model):
  117. # chech model
  118. model_eval = model if self.model_ema is None else self.model_ema.ema
  119. # path to save model
  120. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  121. os.makedirs(path_to_save, exist_ok=True)
  122. if distributed_utils.is_main_process():
  123. # check evaluator
  124. if self.evaluator is None:
  125. print('No evaluator ... save model and go on training.')
  126. print('Saving state, epoch: {}'.format(self.epoch + 1))
  127. weight_name = '{}_no_eval.pth'.format(self.args.model)
  128. checkpoint_path = os.path.join(path_to_save, weight_name)
  129. torch.save({'model': model_eval.state_dict(),
  130. 'mAP': -1.,
  131. 'optimizer': self.optimizer.state_dict(),
  132. 'epoch': self.epoch,
  133. 'args': self.args},
  134. checkpoint_path)
  135. else:
  136. print('eval ...')
  137. # set eval mode
  138. model_eval.trainable = False
  139. model_eval.eval()
  140. # evaluate
  141. with torch.no_grad():
  142. self.evaluator.evaluate(model_eval)
  143. # save model
  144. cur_map = self.evaluator.map
  145. if cur_map > self.best_map:
  146. # update best-map
  147. self.best_map = cur_map
  148. # save model
  149. print('Saving state, epoch:', self.epoch + 1)
  150. weight_name = '{}_best.pth'.format(self.args.model)
  151. checkpoint_path = os.path.join(path_to_save, weight_name)
  152. torch.save({'model': model_eval.state_dict(),
  153. 'mAP': round(self.best_map*100, 1),
  154. 'optimizer': self.optimizer.state_dict(),
  155. 'epoch': self.epoch,
  156. 'args': self.args},
  157. checkpoint_path)
  158. # set train mode.
  159. model_eval.trainable = True
  160. model_eval.train()
  161. if self.args.distributed:
  162. # wait for all processes to synchronize
  163. dist.barrier()
  164. def train_one_epoch(self, model):
  165. # basic parameters
  166. epoch_size = len(self.train_loader)
  167. img_size = self.args.img_size
  168. t0 = time.time()
  169. nw = epoch_size * self.args.wp_epoch
  170. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  171. # train one epoch
  172. for iter_i, (images, targets) in enumerate(self.train_loader):
  173. ni = iter_i + self.epoch * epoch_size
  174. # Warmup
  175. if ni <= nw:
  176. xi = [0, nw] # x interp
  177. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  178. for j, x in enumerate(self.optimizer.param_groups):
  179. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  180. x['lr'] = np.interp(
  181. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  182. if 'momentum' in x:
  183. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  184. # to device
  185. images = images.to(self.device, non_blocking=True).float() / 255.
  186. # Multi scale
  187. if self.args.multi_scale:
  188. images, targets, img_size = self.rescale_image_targets(
  189. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  190. else:
  191. targets = self.refine_targets(targets, self.args.min_box_size)
  192. # visualize train targets
  193. if self.args.vis_tgt:
  194. vis_data(images*255, targets)
  195. # inference
  196. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  197. outputs = model(images)
  198. # loss
  199. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  200. losses = loss_dict['losses']
  201. losses *= images.shape[0] # loss * bs
  202. # reduce
  203. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  204. # gradient averaged between devices in DDP mode
  205. losses *= distributed_utils.get_world_size()
  206. # backward
  207. self.scaler.scale(losses).backward()
  208. # Optimize
  209. if ni - self.last_opt_step >= accumulate:
  210. if self.clip_grad > 0:
  211. # unscale gradients
  212. self.scaler.unscale_(self.optimizer)
  213. # clip gradients
  214. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  215. # optimizer.step
  216. self.scaler.step(self.optimizer)
  217. self.scaler.update()
  218. self.optimizer.zero_grad()
  219. # ema
  220. if self.model_ema is not None:
  221. self.model_ema.update(model)
  222. self.last_opt_step = ni
  223. # display
  224. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  225. t1 = time.time()
  226. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  227. # basic infor
  228. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  229. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  230. log += '[lr: {:.6f}]'.format(cur_lr[2])
  231. # loss infor
  232. for k in loss_dict_reduced.keys():
  233. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  234. # other infor
  235. log += '[time: {:.2f}]'.format(t1 - t0)
  236. log += '[size: {}]'.format(img_size)
  237. # print log infor
  238. print(log, flush=True)
  239. t0 = time.time()
  240. self.lr_scheduler.step()
  241. def refine_targets(self, targets, min_box_size):
  242. # rescale targets
  243. for tgt in targets:
  244. boxes = tgt["boxes"].clone()
  245. labels = tgt["labels"].clone()
  246. # refine tgt
  247. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  248. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  249. keep = (min_tgt_size >= min_box_size)
  250. tgt["boxes"] = boxes[keep]
  251. tgt["labels"] = labels[keep]
  252. return targets
  253. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  254. """
  255. Deployed for Multi scale trick.
  256. """
  257. if isinstance(stride, int):
  258. max_stride = stride
  259. elif isinstance(stride, list):
  260. max_stride = max(stride)
  261. # During training phase, the shape of input image is square.
  262. old_img_size = images.shape[-1]
  263. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  264. new_img_size = new_img_size // max_stride * max_stride # size
  265. if new_img_size / old_img_size != 1:
  266. # interpolate
  267. images = torch.nn.functional.interpolate(
  268. input=images,
  269. size=new_img_size,
  270. mode='bilinear',
  271. align_corners=False)
  272. # rescale targets
  273. for tgt in targets:
  274. boxes = tgt["boxes"].clone()
  275. labels = tgt["labels"].clone()
  276. boxes = torch.clamp(boxes, 0, old_img_size)
  277. # rescale box
  278. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  279. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  280. # refine tgt
  281. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  282. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  283. keep = (min_tgt_size >= min_box_size)
  284. tgt["boxes"] = boxes[keep]
  285. tgt["labels"] = labels[keep]
  286. return images, targets, new_img_size
  287. # YOLOX-syle Trainer
  288. class YoloxTrainer(object):
  289. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  290. # ------------------- basic parameters -------------------
  291. self.args = args
  292. self.epoch = 0
  293. self.best_map = -1.
  294. self.device = device
  295. self.criterion = criterion
  296. self.world_size = world_size
  297. self.no_aug_epoch = args.no_aug_epoch
  298. self.heavy_eval = False
  299. self.second_stage = False
  300. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  301. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  302. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  303. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  304. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  305. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  306. self.data_cfg = data_cfg
  307. self.model_cfg = model_cfg
  308. self.trans_cfg = trans_cfg
  309. # ---------------------------- Build Transform ----------------------------
  310. self.train_transform, self.trans_cfg = build_transform(
  311. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  312. self.val_transform, _ = build_transform(
  313. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  314. # ---------------------------- Build Dataset & Dataloader ----------------------------
  315. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  316. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  317. # ---------------------------- Build Evaluator ----------------------------
  318. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  319. # ---------------------------- Build Grad. Scaler ----------------------------
  320. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  321. # ---------------------------- Build Optimizer ----------------------------
  322. self.optimizer_dict['lr0'] *= self.args.batch_size / 64
  323. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  324. # ---------------------------- Build LR Scheduler ----------------------------
  325. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  326. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  327. if self.args.resume:
  328. self.lr_scheduler.step()
  329. # ---------------------------- Build Model-EMA ----------------------------
  330. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  331. print('Build ModelEMA ...')
  332. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  333. else:
  334. self.model_ema = None
  335. def train(self, model):
  336. for epoch in range(self.start_epoch, self.args.max_epoch):
  337. if self.args.distributed:
  338. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  339. # check second stage
  340. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  341. self.check_second_stage()
  342. # train one epoch
  343. self.epoch = epoch
  344. self.train_one_epoch(model)
  345. # eval one epoch
  346. if self.heavy_eval:
  347. model_eval = model.module if self.args.distributed else model
  348. self.eval(model_eval)
  349. else:
  350. model_eval = model.module if self.args.distributed else model
  351. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  352. self.eval(model_eval)
  353. def eval(self, model):
  354. # chech model
  355. model_eval = model if self.model_ema is None else self.model_ema.ema
  356. # path to save model
  357. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  358. os.makedirs(path_to_save, exist_ok=True)
  359. if distributed_utils.is_main_process():
  360. # check evaluator
  361. if self.evaluator is None:
  362. print('No evaluator ... save model and go on training.')
  363. print('Saving state, epoch: {}'.format(self.epoch + 1))
  364. weight_name = '{}_no_eval.pth'.format(self.args.model)
  365. checkpoint_path = os.path.join(path_to_save, weight_name)
  366. torch.save({'model': model_eval.state_dict(),
  367. 'mAP': -1.,
  368. 'optimizer': self.optimizer.state_dict(),
  369. 'epoch': self.epoch,
  370. 'args': self.args},
  371. checkpoint_path)
  372. else:
  373. print('eval ...')
  374. # set eval mode
  375. model_eval.trainable = False
  376. model_eval.eval()
  377. # evaluate
  378. with torch.no_grad():
  379. self.evaluator.evaluate(model_eval)
  380. # save model
  381. cur_map = self.evaluator.map
  382. if cur_map > self.best_map:
  383. # update best-map
  384. self.best_map = cur_map
  385. # save model
  386. print('Saving state, epoch:', self.epoch + 1)
  387. weight_name = '{}_best.pth'.format(self.args.model)
  388. checkpoint_path = os.path.join(path_to_save, weight_name)
  389. torch.save({'model': model_eval.state_dict(),
  390. 'mAP': round(self.best_map*100, 1),
  391. 'optimizer': self.optimizer.state_dict(),
  392. 'epoch': self.epoch,
  393. 'args': self.args},
  394. checkpoint_path)
  395. # set train mode.
  396. model_eval.trainable = True
  397. model_eval.train()
  398. if self.args.distributed:
  399. # wait for all processes to synchronize
  400. dist.barrier()
  401. def train_one_epoch(self, model):
  402. # basic parameters
  403. epoch_size = len(self.train_loader)
  404. img_size = self.args.img_size
  405. t0 = time.time()
  406. nw = epoch_size * self.args.wp_epoch
  407. # Train one epoch
  408. for iter_i, (images, targets) in enumerate(self.train_loader):
  409. ni = iter_i + self.epoch * epoch_size
  410. # Warmup
  411. if ni <= nw:
  412. xi = [0, nw] # x interp
  413. for j, x in enumerate(self.optimizer.param_groups):
  414. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  415. x['lr'] = np.interp(
  416. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  417. if 'momentum' in x:
  418. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  419. # To device
  420. images = images.to(self.device, non_blocking=True).float() / 255.
  421. # Multi scale
  422. if self.args.multi_scale:
  423. images, targets, img_size = self.rescale_image_targets(
  424. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  425. else:
  426. targets = self.refine_targets(targets, self.args.min_box_size)
  427. # Visualize train targets
  428. if self.args.vis_tgt:
  429. vis_data(images*255, targets)
  430. # Inference
  431. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  432. outputs = model(images)
  433. # Compute loss
  434. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  435. losses = loss_dict['losses']
  436. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  437. # Backward
  438. self.scaler.scale(losses).backward()
  439. # Optimize
  440. self.scaler.step(self.optimizer)
  441. self.scaler.update()
  442. self.optimizer.zero_grad()
  443. # ema
  444. if self.model_ema is not None:
  445. self.model_ema.update(model)
  446. # Logs
  447. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  448. t1 = time.time()
  449. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  450. # basic infor
  451. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  452. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  453. log += '[lr: {:.6f}]'.format(cur_lr[2])
  454. # loss infor
  455. for k in loss_dict_reduced.keys():
  456. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  457. # other infor
  458. log += '[time: {:.2f}]'.format(t1 - t0)
  459. log += '[size: {}]'.format(img_size)
  460. # print log infor
  461. print(log, flush=True)
  462. t0 = time.time()
  463. # LR Schedule
  464. self.lr_scheduler.step()
  465. def check_second_stage(self):
  466. # set second stage
  467. print('============== Second stage of Training ==============')
  468. self.second_stage = True
  469. # close mosaic augmentation
  470. if self.train_loader.dataset.mosaic_prob > 0.:
  471. print(' - Close < Mosaic Augmentation > ...')
  472. self.train_loader.dataset.mosaic_prob = 0.
  473. self.heavy_eval = True
  474. # close mixup augmentation
  475. if self.train_loader.dataset.mixup_prob > 0.:
  476. print(' - Close < Mixup Augmentation > ...')
  477. self.train_loader.dataset.mixup_prob = 0.
  478. self.heavy_eval = True
  479. # close rotation augmentation
  480. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  481. print(' - Close < degress of rotation > ...')
  482. self.trans_cfg['degrees'] = 0.0
  483. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  484. print(' - Close < shear of rotation >...')
  485. self.trans_cfg['shear'] = 0.0
  486. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  487. print(' - Close < perspective of rotation > ...')
  488. self.trans_cfg['perspective'] = 0.0
  489. # build a new transform for second stage
  490. print(' - Rebuild transforms ...')
  491. self.train_transform, self.trans_cfg = build_transform(
  492. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  493. self.train_loader.dataset.transform = self.train_transform
  494. def refine_targets(self, targets, min_box_size):
  495. # rescale targets
  496. for tgt in targets:
  497. boxes = tgt["boxes"].clone()
  498. labels = tgt["labels"].clone()
  499. # refine tgt
  500. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  501. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  502. keep = (min_tgt_size >= min_box_size)
  503. tgt["boxes"] = boxes[keep]
  504. tgt["labels"] = labels[keep]
  505. return targets
  506. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  507. """
  508. Deployed for Multi scale trick.
  509. """
  510. if isinstance(stride, int):
  511. max_stride = stride
  512. elif isinstance(stride, list):
  513. max_stride = max(stride)
  514. # During training phase, the shape of input image is square.
  515. old_img_size = images.shape[-1]
  516. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  517. new_img_size = new_img_size // max_stride * max_stride # size
  518. if new_img_size / old_img_size != 1:
  519. # interpolate
  520. images = torch.nn.functional.interpolate(
  521. input=images,
  522. size=new_img_size,
  523. mode='bilinear',
  524. align_corners=False)
  525. # rescale targets
  526. for tgt in targets:
  527. boxes = tgt["boxes"].clone()
  528. labels = tgt["labels"].clone()
  529. boxes = torch.clamp(boxes, 0, old_img_size)
  530. # rescale box
  531. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  532. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  533. # refine tgt
  534. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  535. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  536. keep = (min_tgt_size >= min_box_size)
  537. tgt["boxes"] = boxes[keep]
  538. tgt["labels"] = labels[keep]
  539. return images, targets, new_img_size
  540. # RTMDet-syle Trainer
  541. class RTMTrainer(object):
  542. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  543. # ------------------- basic parameters -------------------
  544. self.args = args
  545. self.epoch = 0
  546. self.best_map = -1.
  547. self.device = device
  548. self.criterion = criterion
  549. self.world_size = world_size
  550. self.no_aug_epoch = args.no_aug_epoch
  551. self.clip_grad = 35
  552. self.heavy_eval = False
  553. self.second_stage = False
  554. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  555. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  556. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  557. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  558. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  559. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  560. self.data_cfg = data_cfg
  561. self.model_cfg = model_cfg
  562. self.trans_cfg = trans_cfg
  563. # ---------------------------- Build Transform ----------------------------
  564. self.train_transform, self.trans_cfg = build_transform(
  565. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  566. self.val_transform, _ = build_transform(
  567. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  568. # ---------------------------- Build Dataset & Dataloader ----------------------------
  569. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  570. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  571. # ---------------------------- Build Evaluator ----------------------------
  572. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  573. # ---------------------------- Build Grad. Scaler ----------------------------
  574. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  575. # ---------------------------- Build Optimizer ----------------------------
  576. self.optimizer_dict['lr0'] *= self.args.batch_size / 64
  577. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  578. # ---------------------------- Build LR Scheduler ----------------------------
  579. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  580. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  581. if self.args.resume:
  582. self.lr_scheduler.step()
  583. # ---------------------------- Build Model-EMA ----------------------------
  584. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  585. print('Build ModelEMA ...')
  586. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  587. else:
  588. self.model_ema = None
  589. def train(self, model):
  590. for epoch in range(self.start_epoch, self.args.max_epoch):
  591. if self.args.distributed:
  592. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  593. # check second stage
  594. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  595. self.check_second_stage()
  596. # train one epoch
  597. self.epoch = epoch
  598. self.train_one_epoch(model)
  599. # eval one epoch
  600. if self.heavy_eval:
  601. model_eval = model.module if self.args.distributed else model
  602. self.eval(model_eval)
  603. else:
  604. model_eval = model.module if self.args.distributed else model
  605. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  606. self.eval(model_eval)
  607. def eval(self, model):
  608. # chech model
  609. model_eval = model if self.model_ema is None else self.model_ema.ema
  610. # path to save model
  611. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  612. os.makedirs(path_to_save, exist_ok=True)
  613. if distributed_utils.is_main_process():
  614. # check evaluator
  615. if self.evaluator is None:
  616. print('No evaluator ... save model and go on training.')
  617. print('Saving state, epoch: {}'.format(self.epoch + 1))
  618. weight_name = '{}_no_eval.pth'.format(self.args.model)
  619. checkpoint_path = os.path.join(path_to_save, weight_name)
  620. torch.save({'model': model_eval.state_dict(),
  621. 'mAP': -1.,
  622. 'optimizer': self.optimizer.state_dict(),
  623. 'epoch': self.epoch,
  624. 'args': self.args},
  625. checkpoint_path)
  626. else:
  627. print('eval ...')
  628. # set eval mode
  629. model_eval.trainable = False
  630. model_eval.eval()
  631. # evaluate
  632. with torch.no_grad():
  633. self.evaluator.evaluate(model_eval)
  634. # save model
  635. cur_map = self.evaluator.map
  636. if cur_map > self.best_map:
  637. # update best-map
  638. self.best_map = cur_map
  639. # save model
  640. print('Saving state, epoch:', self.epoch + 1)
  641. weight_name = '{}_best.pth'.format(self.args.model)
  642. checkpoint_path = os.path.join(path_to_save, weight_name)
  643. torch.save({'model': model_eval.state_dict(),
  644. 'mAP': round(self.best_map*100, 1),
  645. 'optimizer': self.optimizer.state_dict(),
  646. 'epoch': self.epoch,
  647. 'args': self.args},
  648. checkpoint_path)
  649. # set train mode.
  650. model_eval.trainable = True
  651. model_eval.train()
  652. if self.args.distributed:
  653. # wait for all processes to synchronize
  654. dist.barrier()
  655. def train_one_epoch(self, model):
  656. # basic parameters
  657. epoch_size = len(self.train_loader)
  658. img_size = self.args.img_size
  659. t0 = time.time()
  660. nw = epoch_size * self.args.wp_epoch
  661. # Train one epoch
  662. for iter_i, (images, targets) in enumerate(self.train_loader):
  663. ni = iter_i + self.epoch * epoch_size
  664. # Warmup
  665. if ni <= nw:
  666. xi = [0, nw] # x interp
  667. for j, x in enumerate(self.optimizer.param_groups):
  668. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  669. x['lr'] = np.interp(
  670. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  671. if 'momentum' in x:
  672. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  673. # To device
  674. images = images.to(self.device, non_blocking=True).float() / 255.
  675. # Multi scale
  676. if self.args.multi_scale:
  677. images, targets, img_size = self.rescale_image_targets(
  678. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  679. else:
  680. targets = self.refine_targets(targets, self.args.min_box_size)
  681. # Visualize train targets
  682. if self.args.vis_tgt:
  683. vis_data(images*255, targets)
  684. # Inference
  685. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  686. outputs = model(images)
  687. # Compute loss
  688. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  689. losses = loss_dict['losses']
  690. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  691. # Backward
  692. self.scaler.scale(losses).backward()
  693. # Optimize
  694. if self.clip_grad > 0:
  695. # unscale gradients
  696. self.scaler.unscale_(self.optimizer)
  697. # clip gradients
  698. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  699. # optimizer.step
  700. self.scaler.step(self.optimizer)
  701. self.scaler.update()
  702. self.optimizer.zero_grad()
  703. # ema
  704. if self.model_ema is not None:
  705. self.model_ema.update(model)
  706. # Logs
  707. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  708. t1 = time.time()
  709. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  710. # basic infor
  711. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  712. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  713. log += '[lr: {:.6f}]'.format(cur_lr[2])
  714. # loss infor
  715. for k in loss_dict_reduced.keys():
  716. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  717. # other infor
  718. log += '[time: {:.2f}]'.format(t1 - t0)
  719. log += '[size: {}]'.format(img_size)
  720. # print log infor
  721. print(log, flush=True)
  722. t0 = time.time()
  723. # LR Schedule
  724. self.lr_scheduler.step()
  725. def check_second_stage(self):
  726. # set second stage
  727. print('============== Second stage of Training ==============')
  728. self.second_stage = True
  729. # close mosaic augmentation
  730. if self.train_loader.dataset.mosaic_prob > 0.:
  731. print(' - Close < Mosaic Augmentation > ...')
  732. self.train_loader.dataset.mosaic_prob = 0.
  733. self.heavy_eval = True
  734. # close mixup augmentation
  735. if self.train_loader.dataset.mixup_prob > 0.:
  736. print(' - Close < Mixup Augmentation > ...')
  737. self.train_loader.dataset.mixup_prob = 0.
  738. self.heavy_eval = True
  739. # close rotation augmentation
  740. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  741. print(' - Close < degress of rotation > ...')
  742. self.trans_cfg['degrees'] = 0.0
  743. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  744. print(' - Close < shear of rotation >...')
  745. self.trans_cfg['shear'] = 0.0
  746. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  747. print(' - Close < perspective of rotation > ...')
  748. self.trans_cfg['perspective'] = 0.0
  749. # build a new transform for second stage
  750. print(' - Rebuild transforms ...')
  751. self.train_transform, self.trans_cfg = build_transform(
  752. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  753. self.train_loader.dataset.transform = self.train_transform
  754. def refine_targets(self, targets, min_box_size):
  755. # rescale targets
  756. for tgt in targets:
  757. boxes = tgt["boxes"].clone()
  758. labels = tgt["labels"].clone()
  759. # refine tgt
  760. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  761. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  762. keep = (min_tgt_size >= min_box_size)
  763. tgt["boxes"] = boxes[keep]
  764. tgt["labels"] = labels[keep]
  765. return targets
  766. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  767. """
  768. Deployed for Multi scale trick.
  769. """
  770. if isinstance(stride, int):
  771. max_stride = stride
  772. elif isinstance(stride, list):
  773. max_stride = max(stride)
  774. # During training phase, the shape of input image is square.
  775. old_img_size = images.shape[-1]
  776. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  777. new_img_size = new_img_size // max_stride * max_stride # size
  778. if new_img_size / old_img_size != 1:
  779. # interpolate
  780. images = torch.nn.functional.interpolate(
  781. input=images,
  782. size=new_img_size,
  783. mode='bilinear',
  784. align_corners=False)
  785. # rescale targets
  786. for tgt in targets:
  787. boxes = tgt["boxes"].clone()
  788. labels = tgt["labels"].clone()
  789. boxes = torch.clamp(boxes, 0, old_img_size)
  790. # rescale box
  791. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  792. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  793. # refine tgt
  794. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  795. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  796. keep = (min_tgt_size >= min_box_size)
  797. tgt["boxes"] = boxes[keep]
  798. tgt["labels"] = labels[keep]
  799. return images, targets, new_img_size
  800. # Trainer for DETR
  801. class DetrTrainer(object):
  802. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  803. # ------------------- basic parameters -------------------
  804. self.args = args
  805. self.epoch = 0
  806. self.best_map = -1.
  807. self.last_opt_step = 0
  808. self.no_aug_epoch = args.no_aug_epoch
  809. self.clip_grad = -1
  810. self.device = device
  811. self.criterion = criterion
  812. self.world_size = world_size
  813. self.second_stage = False
  814. self.heavy_eval = False
  815. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
  816. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  817. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  818. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  819. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  820. self.data_cfg = data_cfg
  821. self.model_cfg = model_cfg
  822. self.trans_cfg = trans_cfg
  823. # ---------------------------- Build Transform ----------------------------
  824. self.train_transform, self.trans_cfg = build_transform(
  825. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  826. self.val_transform, _ = build_transform(
  827. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  828. # ---------------------------- Build Dataset & Dataloader ----------------------------
  829. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  830. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  831. # ---------------------------- Build Evaluator ----------------------------
  832. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  833. # ---------------------------- Build Grad. Scaler ----------------------------
  834. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  835. # ---------------------------- Build Optimizer ----------------------------
  836. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  837. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  838. # ---------------------------- Build LR Scheduler ----------------------------
  839. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  840. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  841. if self.args.resume:
  842. self.lr_scheduler.step()
  843. # ---------------------------- Build Model-EMA ----------------------------
  844. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  845. print('Build ModelEMA ...')
  846. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  847. else:
  848. self.model_ema = None
  849. def check_second_stage(self):
  850. # set second stage
  851. print('============== Second stage of Training ==============')
  852. self.second_stage = True
  853. # close mosaic augmentation
  854. if self.train_loader.dataset.mosaic_prob > 0.:
  855. print(' - Close < Mosaic Augmentation > ...')
  856. self.train_loader.dataset.mosaic_prob = 0.
  857. self.heavy_eval = True
  858. # close mixup augmentation
  859. if self.train_loader.dataset.mixup_prob > 0.:
  860. print(' - Close < Mixup Augmentation > ...')
  861. self.train_loader.dataset.mixup_prob = 0.
  862. self.heavy_eval = True
  863. # close rotation augmentation
  864. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  865. print(' - Close < degress of rotation > ...')
  866. self.trans_cfg['degrees'] = 0.0
  867. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  868. print(' - Close < shear of rotation >...')
  869. self.trans_cfg['shear'] = 0.0
  870. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  871. print(' - Close < perspective of rotation > ...')
  872. self.trans_cfg['perspective'] = 0.0
  873. # build a new transform for second stage
  874. print(' - Rebuild transforms ...')
  875. self.train_transform, self.trans_cfg = build_transform(
  876. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  877. self.train_loader.dataset.transform = self.train_transform
  878. def train(self, model):
  879. for epoch in range(self.start_epoch, self.args.max_epoch):
  880. if self.args.distributed:
  881. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  882. # check second stage
  883. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  884. self.check_second_stage()
  885. # train one epoch
  886. self.epoch = epoch
  887. self.train_one_epoch(model)
  888. # eval one epoch
  889. if self.heavy_eval:
  890. model_eval = model.module if self.args.distributed else model
  891. self.eval(model_eval)
  892. else:
  893. model_eval = model.module if self.args.distributed else model
  894. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  895. self.eval(model_eval)
  896. def eval(self, model):
  897. # chech model
  898. model_eval = model if self.model_ema is None else self.model_ema.ema
  899. # path to save model
  900. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  901. os.makedirs(path_to_save, exist_ok=True)
  902. if distributed_utils.is_main_process():
  903. # check evaluator
  904. if self.evaluator is None:
  905. print('No evaluator ... save model and go on training.')
  906. print('Saving state, epoch: {}'.format(self.epoch + 1))
  907. weight_name = '{}_no_eval.pth'.format(self.args.model)
  908. checkpoint_path = os.path.join(path_to_save, weight_name)
  909. torch.save({'model': model_eval.state_dict(),
  910. 'mAP': -1.,
  911. 'optimizer': self.optimizer.state_dict(),
  912. 'epoch': self.epoch,
  913. 'args': self.args},
  914. checkpoint_path)
  915. else:
  916. print('eval ...')
  917. # set eval mode
  918. model_eval.trainable = False
  919. model_eval.eval()
  920. # evaluate
  921. with torch.no_grad():
  922. self.evaluator.evaluate(model_eval)
  923. # save model
  924. cur_map = self.evaluator.map
  925. if cur_map > self.best_map:
  926. # update best-map
  927. self.best_map = cur_map
  928. # save model
  929. print('Saving state, epoch:', self.epoch + 1)
  930. weight_name = '{}_best.pth'.format(self.args.model)
  931. checkpoint_path = os.path.join(path_to_save, weight_name)
  932. torch.save({'model': model_eval.state_dict(),
  933. 'mAP': round(self.best_map*100, 1),
  934. 'optimizer': self.optimizer.state_dict(),
  935. 'epoch': self.epoch,
  936. 'args': self.args},
  937. checkpoint_path)
  938. # set train mode.
  939. model_eval.trainable = True
  940. model_eval.train()
  941. if self.args.distributed:
  942. # wait for all processes to synchronize
  943. dist.barrier()
  944. def train_one_epoch(self, model):
  945. # basic parameters
  946. epoch_size = len(self.train_loader)
  947. img_size = self.args.img_size
  948. t0 = time.time()
  949. nw = epoch_size * self.args.wp_epoch
  950. # train one epoch
  951. for iter_i, (images, targets) in enumerate(self.train_loader):
  952. ni = iter_i + self.epoch * epoch_size
  953. # Warmup
  954. if ni <= nw:
  955. xi = [0, nw] # x interp
  956. for j, x in enumerate(self.optimizer.param_groups):
  957. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  958. x['lr'] = np.interp(
  959. ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  960. if 'momentum' in x:
  961. x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
  962. # To device
  963. images = images.to(self.device, non_blocking=True).float() / 255.
  964. # Multi scale
  965. if self.args.multi_scale:
  966. images, targets, img_size = self.rescale_image_targets(
  967. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  968. else:
  969. targets = self.refine_targets(targets, self.args.min_box_size, img_size)
  970. # Visualize targets
  971. if self.args.vis_tgt:
  972. vis_data(images*255, targets)
  973. # Inference
  974. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  975. outputs = model(images)
  976. # Compute loss
  977. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  978. losses = loss_dict['losses']
  979. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  980. # Backward
  981. self.scaler.scale(losses).backward()
  982. # Optimize
  983. if self.clip_grad > 0:
  984. # unscale gradients
  985. self.scaler.unscale_(self.optimizer)
  986. # clip gradients
  987. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  988. self.scaler.step(self.optimizer)
  989. self.scaler.update()
  990. self.optimizer.zero_grad()
  991. # Model EMA
  992. if self.model_ema is not None:
  993. self.model_ema.update(model)
  994. self.last_opt_step = ni
  995. # Log
  996. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  997. t1 = time.time()
  998. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  999. # basic infor
  1000. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1001. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1002. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1003. # loss infor
  1004. for k in loss_dict_reduced.keys():
  1005. if self.args.vis_aux_loss:
  1006. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1007. else:
  1008. if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
  1009. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1010. # other infor
  1011. log += '[time: {:.2f}]'.format(t1 - t0)
  1012. log += '[size: {}]'.format(img_size)
  1013. # print log infor
  1014. print(log, flush=True)
  1015. t0 = time.time()
  1016. # LR Scheduler
  1017. self.lr_scheduler.step()
  1018. def refine_targets(self, targets, min_box_size, img_size):
  1019. # rescale targets
  1020. for tgt in targets:
  1021. boxes = tgt["boxes"]
  1022. labels = tgt["labels"]
  1023. # refine tgt
  1024. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1025. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1026. keep = (min_tgt_size >= min_box_size)
  1027. # xyxy -> cxcywh
  1028. new_boxes = torch.zeros_like(boxes)
  1029. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1030. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1031. # normalize
  1032. new_boxes /= img_size
  1033. del boxes
  1034. tgt["boxes"] = new_boxes[keep]
  1035. tgt["labels"] = labels[keep]
  1036. return targets
  1037. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1038. """
  1039. Deployed for Multi scale trick.
  1040. """
  1041. if isinstance(stride, int):
  1042. max_stride = stride
  1043. elif isinstance(stride, list):
  1044. max_stride = max(stride)
  1045. # During training phase, the shape of input image is square.
  1046. old_img_size = images.shape[-1]
  1047. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1048. new_img_size = new_img_size // max_stride * max_stride # size
  1049. if new_img_size / old_img_size != 1:
  1050. # interpolate
  1051. images = torch.nn.functional.interpolate(
  1052. input=images,
  1053. size=new_img_size,
  1054. mode='bilinear',
  1055. align_corners=False)
  1056. # rescale targets
  1057. for tgt in targets:
  1058. boxes = tgt["boxes"].clone()
  1059. labels = tgt["labels"].clone()
  1060. boxes = torch.clamp(boxes, 0, old_img_size)
  1061. # rescale box
  1062. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1063. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1064. # refine tgt
  1065. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1066. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1067. keep = (min_tgt_size >= min_box_size)
  1068. # xyxy -> cxcywh
  1069. new_boxes = torch.zeros_like(boxes)
  1070. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1071. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1072. # normalize
  1073. new_boxes /= new_img_size
  1074. del boxes
  1075. tgt["boxes"] = new_boxes[keep]
  1076. tgt["labels"] = labels[keep]
  1077. return images, targets, new_img_size
  1078. # Build Trainer
  1079. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1080. if model_cfg['trainer_type'] == 'yolov8':
  1081. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1082. elif model_cfg['trainer_type'] == 'yolox':
  1083. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1084. elif model_cfg['trainer_type'] == 'rtmdet':
  1085. return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1086. elif model_cfg['trainer_type'] == 'detr':
  1087. return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1088. else:
  1089. raise NotImplementedError