| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from scipy.optimize import linear_sum_assignment
- try:
- from .loss_utils import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh, generalized_box_iou
- except:
- from loss_utils import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh, generalized_box_iou
- class HungarianMatcher(nn.Module):
- def __init__(self, cost_class, cost_bbox, cost_giou, alpha=0.25, gamma=2.0):
- super().__init__()
- self.cost_class = cost_class
- self.cost_bbox = cost_bbox
- self.cost_giou = cost_giou
- self.alpha = alpha
- self.gamma = gamma
- @torch.no_grad()
- def forward(self, pred_boxes, pred_logits, gt_boxes, gt_labels):
- bs, num_queries = pred_logits.shape[:2]
- # [B, Nq, C] -> [BNq, C]
- out_prob = pred_logits.flatten(0, 1).sigmoid()
- out_bbox = pred_boxes.flatten(0, 1)
- # List[B, M, C] -> [BM, C]
- tgt_ids = torch.cat(gt_labels).long()
- tgt_bbox = torch.cat(gt_boxes).float()
- # -------------------- Classification cost --------------------
- neg_cost_class = (1 - self.alpha) * (out_prob ** self.gamma) * (-(1 - out_prob + 1e-8).log())
- pos_cost_class = self.alpha * ((1 - out_prob) ** self.gamma) * (-(out_prob + 1e-8).log())
- cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]
- # -------------------- Regression cost --------------------
- ## L1 cost: [Nq, M]
- cost_bbox = torch.cdist(out_bbox, tgt_bbox.to(out_bbox.device), p=1)
- ## GIoU cost: Nq, M]
- cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox),
- box_cxcywh_to_xyxy(tgt_bbox).to(out_bbox.device))
- # Final cost: [B, Nq, M]
- C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
- C = C.view(bs, num_queries, -1).cpu()
- # Label assignment
- sizes = [len(t) for t in gt_boxes]
- indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
- return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
-
|