yolov7.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov7_backbone import build_backbone
  5. from .yolov7_neck import build_neck
  6. from .yolov7_pafpn import build_fpn
  7. from .yolov7_head import build_head
  8. # YOLOv7
  9. class YOLOv7(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False,
  18. deploy = False,
  19. no_multi_labels = False,
  20. nms_class_agnostic = False):
  21. super(YOLOv7, self).__init__()
  22. # ------------------- Basic parameters -------------------
  23. self.cfg = cfg # 模型配置文件
  24. self.device = device # cuda或者是cpu
  25. self.num_classes = num_classes # 类别的数量
  26. self.trainable = trainable # 训练的标记
  27. self.conf_thresh = conf_thresh # 得分阈值
  28. self.nms_thresh = nms_thresh # NMS阈值
  29. self.topk_candidates = topk # topk
  30. self.stride = [8, 16, 32] # 网络的输出步长
  31. self.num_levels = 3
  32. self.deploy = deploy
  33. self.no_multi_labels = no_multi_labels
  34. self.nms_class_agnostic = nms_class_agnostic
  35. # ------------------- Network Structure -------------------
  36. ## 主干网络
  37. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  38. ## 颈部网络: SPP模块
  39. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
  40. feats_dim[-1] = self.neck.out_dim
  41. ## 颈部网络: 特征金字塔
  42. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['channel_width']))
  43. self.head_dim = self.fpn.out_dim
  44. ## 检测头
  45. self.non_shared_heads = nn.ModuleList(
  46. [build_head(cfg, head_dim, head_dim, num_classes)
  47. for head_dim in self.head_dim
  48. ])
  49. ## 预测层
  50. self.obj_preds = nn.ModuleList(
  51. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  52. for head in self.non_shared_heads
  53. ])
  54. self.cls_preds = nn.ModuleList(
  55. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  56. for head in self.non_shared_heads
  57. ])
  58. self.reg_preds = nn.ModuleList(
  59. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  60. for head in self.non_shared_heads
  61. ])
  62. # ---------------------- Basic Functions ----------------------
  63. ## generate anchor points
  64. def generate_anchors(self, level, fmp_size):
  65. """
  66. fmp_size: (List) [H, W]
  67. """
  68. # generate grid cells
  69. fmp_h, fmp_w = fmp_size
  70. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  71. # [H, W, 2] -> [HW, 2]
  72. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  73. anchor_xy += 0.5 # add center offset
  74. anchor_xy *= self.stride[level]
  75. anchors = anchor_xy.to(self.device)
  76. return anchors
  77. ## post-process
  78. def post_process(self, obj_preds, cls_preds, box_preds):
  79. """
  80. Input:
  81. cls_preds: List[np.array] -> [[M, C], ...]
  82. box_preds: List[np.array] -> [[M, 4], ...]
  83. obj_preds: List[np.array] -> [[M, 1], ...] or None
  84. Output:
  85. bboxes: np.array -> [N, 4]
  86. scores: np.array -> [N,]
  87. labels: np.array -> [N,]
  88. """
  89. assert len(cls_preds) == self.num_levels
  90. all_scores = []
  91. all_labels = []
  92. all_bboxes = []
  93. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  94. if self.no_multi_labels:
  95. # [M,]
  96. scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  97. # Keep top k top scoring indices only.
  98. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  99. # topk candidates
  100. predicted_prob, topk_idxs = scores.sort(descending=True)
  101. topk_scores = predicted_prob[:num_topk]
  102. topk_idxs = topk_idxs[:num_topk]
  103. # filter out the proposals with low confidence score
  104. keep_idxs = topk_scores > self.conf_thresh
  105. scores = topk_scores[keep_idxs]
  106. topk_idxs = topk_idxs[keep_idxs]
  107. labels = labels[topk_idxs]
  108. bboxes = box_pred_i[topk_idxs]
  109. else:
  110. # [M, C] -> [MC,]
  111. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  112. # Keep top k top scoring indices only.
  113. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  114. # torch.sort is actually faster than .topk (at least on GPUs)
  115. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  116. topk_scores = predicted_prob[:num_topk]
  117. topk_idxs = topk_idxs[:num_topk]
  118. # filter out the proposals with low confidence score
  119. keep_idxs = topk_scores > self.conf_thresh
  120. scores = topk_scores[keep_idxs]
  121. topk_idxs = topk_idxs[keep_idxs]
  122. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  123. labels = topk_idxs % self.num_classes
  124. bboxes = box_pred_i[anchor_idxs]
  125. all_scores.append(scores)
  126. all_labels.append(labels)
  127. all_bboxes.append(bboxes)
  128. scores = torch.cat(all_scores)
  129. labels = torch.cat(all_labels)
  130. bboxes = torch.cat(all_bboxes)
  131. # to cpu & numpy
  132. scores = scores.cpu().numpy()
  133. labels = labels.cpu().numpy()
  134. bboxes = bboxes.cpu().numpy()
  135. # nms
  136. scores, labels, bboxes = multiclass_nms(
  137. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  138. return bboxes, scores, labels
  139. # ---------------------- Main Process for Inference ----------------------
  140. @torch.no_grad()
  141. def inference_single_image(self, x):
  142. # 主干网络
  143. pyramid_feats = self.backbone(x)
  144. # 颈部网络
  145. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  146. # 特征金字塔
  147. pyramid_feats = self.fpn(pyramid_feats)
  148. # 检测头
  149. all_obj_preds = []
  150. all_cls_preds = []
  151. all_box_preds = []
  152. all_anchors = []
  153. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  154. cls_feat, reg_feat = head(feat)
  155. # [1, C, H, W]
  156. obj_pred = self.obj_preds[level](reg_feat)
  157. cls_pred = self.cls_preds[level](cls_feat)
  158. reg_pred = self.reg_preds[level](reg_feat)
  159. # anchors: [M, 2]
  160. fmp_size = cls_pred.shape[-2:]
  161. anchors = self.generate_anchors(level, fmp_size)
  162. # [1, C, H, W] -> [H, W, C] -> [M, C]
  163. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  164. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  165. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  166. # decode bbox
  167. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  168. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  169. pred_x1y1 = ctr_pred - wh_pred * 0.5
  170. pred_x2y2 = ctr_pred + wh_pred * 0.5
  171. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  172. all_obj_preds.append(obj_pred)
  173. all_cls_preds.append(cls_pred)
  174. all_box_preds.append(box_pred)
  175. all_anchors.append(anchors)
  176. if self.deploy:
  177. obj_preds = torch.cat(all_obj_preds, dim=0)
  178. cls_preds = torch.cat(all_cls_preds, dim=0)
  179. box_preds = torch.cat(all_box_preds, dim=0)
  180. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  181. bboxes = box_preds
  182. # [n_anchors_all, 4 + C]
  183. outputs = torch.cat([bboxes, scores], dim=-1)
  184. else:
  185. # post process
  186. bboxes, scores, labels = self.post_process(
  187. all_obj_preds, all_cls_preds, all_box_preds)
  188. outputs = {
  189. "scores": scores,
  190. "labels": labels,
  191. "bboxes": bboxes
  192. }
  193. return outputs
  194. # ---------------------- Main Process for Training ----------------------
  195. def forward(self, x):
  196. if not self.trainable:
  197. return self.inference_single_image(x)
  198. else:
  199. # 主干网络
  200. pyramid_feats = self.backbone(x)
  201. # 颈部网络
  202. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  203. # 特征金字塔
  204. pyramid_feats = self.fpn(pyramid_feats)
  205. # 检测头
  206. all_anchors = []
  207. all_strides = []
  208. all_obj_preds = []
  209. all_cls_preds = []
  210. all_box_preds = []
  211. all_reg_preds = []
  212. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  213. cls_feat, reg_feat = head(feat)
  214. # [B, C, H, W]
  215. obj_pred = self.obj_preds[level](reg_feat)
  216. cls_pred = self.cls_preds[level](cls_feat)
  217. reg_pred = self.reg_preds[level](reg_feat)
  218. B, _, H, W = cls_pred.size()
  219. fmp_size = [H, W]
  220. # generate anchor boxes: [M, 4]
  221. anchors = self.generate_anchors(level, fmp_size)
  222. # stride tensor: [M, 1]
  223. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
  224. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  225. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  226. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  227. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  228. # decode bbox
  229. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  230. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  231. pred_x1y1 = ctr_pred - wh_pred * 0.5
  232. pred_x2y2 = ctr_pred + wh_pred * 0.5
  233. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  234. all_obj_preds.append(obj_pred)
  235. all_cls_preds.append(cls_pred)
  236. all_box_preds.append(box_pred)
  237. all_reg_preds.append(reg_pred)
  238. all_anchors.append(anchors)
  239. all_strides.append(stride_tensor)
  240. # output dict
  241. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  242. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  243. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  244. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  245. "anchors": all_anchors, # List(Tensor) [M, 2]
  246. "strides": self.stride, # List(Int) [8, 16, 32]
  247. "stride_tensors": all_strides # List(Tensor) [M, 1]
  248. }
  249. return outputs