| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import torch
- import torch.nn as nn
- try:
- from .yolov5_basic import Conv, CSPBlock
- from .yolov5_neck import SPPF
- except:
- from yolov5_basic import Conv, CSPBlock
- from yolov5_neck import SPPF
- # CSPDarkNet
- class CSPDarkNet(nn.Module):
- def __init__(self, depth=1.0, width=1.0, act_type='silu', norm_type='BN', depthwise=False):
- super(CSPDarkNet, self).__init__()
- self.feat_dims = [round(64 * width), round(128 * width), round(256 * width), round(512 * width), round(1024 * width)]
- # P1/2
- self.layer_1 = Conv(3, self.feat_dims[0], k=6, p=2, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- # P2/4
- self.layer_2 = nn.Sequential(
- Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- CSPBlock(in_dim = self.feat_dims[1],
- out_dim = self.feat_dims[1],
- expand_ratio = 0.5,
- nblocks = round(3*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- # P3/8
- self.layer_3 = nn.Sequential(
- Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- CSPBlock(in_dim = self.feat_dims[2],
- out_dim = self.feat_dims[2],
- expand_ratio = 0.5,
- nblocks = round(9*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- # P4/16
- self.layer_4 = nn.Sequential(
- Conv(self.feat_dims[2], self.feat_dims[3], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- CSPBlock(in_dim = self.feat_dims[3],
- out_dim = self.feat_dims[3],
- expand_ratio = 0.5,
- nblocks = round(9*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- # P5/32
- self.layer_5 = nn.Sequential(
- Conv(self.feat_dims[3], self.feat_dims[4], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- SPPF(self.feat_dims[4], self.feat_dims[4], expand_ratio=0.5),
- CSPBlock(in_dim = self.feat_dims[4],
- out_dim = self.feat_dims[4],
- expand_ratio = 0.5,
- nblocks = round(3*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ---------------------------- Functions ----------------------------
- ## build CSPDarkNet
- def build_backbone(cfg):
- backbone = CSPDarkNet(cfg['depth'], cfg['width'], cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw'])
- feat_dims = backbone.feat_dims[-3:]
- return backbone, feat_dims
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'pretrained': False,
- 'bk_act': 'lrelu',
- 'bk_norm': 'BN',
- 'bk_dpw': False,
- 'p6_feat': False,
- 'p7_feat': False,
- 'width': 1.0,
- 'depth': 1.0,
- }
- model, feats = build_backbone(cfg)
- x = torch.randn(1, 3, 224, 224)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- x = torch.randn(1, 3, 224, 224)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|