yolov5.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. import numpy as np
  2. import torch
  3. import torch.nn as nn
  4. from .yolov5_backbone import build_backbone
  5. from .yolov5_pafpn import build_fpn
  6. from .yolov5_head import build_head
  7. from utils.misc import multiclass_nms
  8. class YOLOv5(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes = 20,
  13. conf_thresh = 0.01,
  14. nms_thresh = 0.5,
  15. topk = 1000,
  16. trainable = False,
  17. deploy = False,
  18. no_multi_labels = False,
  19. nms_class_agnostic = False):
  20. super(YOLOv5, self).__init__()
  21. # ---------------------- Basic Parameters ----------------------
  22. self.cfg = cfg
  23. self.device = device
  24. self.stride = cfg['stride']
  25. self.num_classes = num_classes
  26. self.trainable = trainable
  27. self.conf_thresh = conf_thresh
  28. self.nms_thresh = nms_thresh
  29. self.topk_candidates = topk
  30. self.no_multi_labels = no_multi_labels
  31. self.nms_class_agnostic = nms_class_agnostic
  32. self.deploy = deploy
  33. # ------------------- Anchor box -------------------
  34. self.num_levels = 3
  35. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  36. self.anchor_size = torch.as_tensor(
  37. cfg['anchor_size']
  38. ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  39. # ------------------- Network Structure -------------------
  40. ## Backbone
  41. self.backbone, feats_dim = build_backbone(cfg)
  42. ## FPN
  43. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  44. self.head_dim = self.fpn.out_dim
  45. ## Head
  46. self.non_shared_heads = nn.ModuleList(
  47. [build_head(cfg, head_dim, head_dim, num_classes)
  48. for head_dim in self.head_dim
  49. ])
  50. ## Pred
  51. self.obj_preds = nn.ModuleList(
  52. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  53. for head in self.non_shared_heads
  54. ])
  55. self.cls_preds = nn.ModuleList(
  56. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  57. for head in self.non_shared_heads
  58. ])
  59. self.reg_preds = nn.ModuleList(
  60. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  61. for head in self.non_shared_heads
  62. ])
  63. # ---------------------- Basic Functions ----------------------
  64. ## generate anchor points
  65. def generate_anchors(self, level, fmp_size):
  66. fmp_h, fmp_w = fmp_size
  67. # [KA, 2]
  68. anchor_size = self.anchor_size[level]
  69. # generate grid cells
  70. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  71. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  72. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  73. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  74. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  75. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  76. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  77. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  78. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  79. return anchors
  80. ## post-process
  81. def post_process(self, obj_preds, cls_preds, box_preds):
  82. """
  83. Input:
  84. cls_preds: List[np.array] -> [[M, C], ...]
  85. box_preds: List[np.array] -> [[M, 4], ...]
  86. obj_preds: List[np.array] -> [[M, 1], ...] or None
  87. Output:
  88. bboxes: np.array -> [N, 4]
  89. scores: np.array -> [N,]
  90. labels: np.array -> [N,]
  91. """
  92. assert len(cls_preds) == self.num_levels
  93. all_scores = []
  94. all_labels = []
  95. all_bboxes = []
  96. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  97. if self.no_multi_labels:
  98. # [M,]
  99. scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  100. # Keep top k top scoring indices only.
  101. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  102. # topk candidates
  103. predicted_prob, topk_idxs = scores.sort(descending=True)
  104. topk_scores = predicted_prob[:num_topk]
  105. topk_idxs = topk_idxs[:num_topk]
  106. # filter out the proposals with low confidence score
  107. keep_idxs = topk_scores > self.conf_thresh
  108. scores = topk_scores[keep_idxs]
  109. topk_idxs = topk_idxs[keep_idxs]
  110. labels = labels[topk_idxs]
  111. bboxes = box_pred_i[topk_idxs]
  112. else:
  113. # [M, C] -> [MC,]
  114. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  115. # Keep top k top scoring indices only.
  116. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  117. # torch.sort is actually faster than .topk (at least on GPUs)
  118. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  119. topk_scores = predicted_prob[:num_topk]
  120. topk_idxs = topk_idxs[:num_topk]
  121. # filter out the proposals with low confidence score
  122. keep_idxs = topk_scores > self.conf_thresh
  123. scores = topk_scores[keep_idxs]
  124. topk_idxs = topk_idxs[keep_idxs]
  125. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  126. labels = topk_idxs % self.num_classes
  127. bboxes = box_pred_i[anchor_idxs]
  128. all_scores.append(scores)
  129. all_labels.append(labels)
  130. all_bboxes.append(bboxes)
  131. scores = torch.cat(all_scores)
  132. labels = torch.cat(all_labels)
  133. bboxes = torch.cat(all_bboxes)
  134. # to cpu & numpy
  135. scores = scores.cpu().numpy()
  136. labels = labels.cpu().numpy()
  137. bboxes = bboxes.cpu().numpy()
  138. # nms
  139. scores, labels, bboxes = multiclass_nms(
  140. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  141. return bboxes, scores, labels
  142. # ---------------------- Main Process for Inference ----------------------
  143. @torch.no_grad()
  144. def inference_single_image(self, x):
  145. # backbone
  146. pyramid_feats = self.backbone(x)
  147. # fpn
  148. pyramid_feats = self.fpn(pyramid_feats)
  149. # non-shared heads
  150. all_anchors = []
  151. all_obj_preds = []
  152. all_cls_preds = []
  153. all_box_preds = []
  154. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  155. cls_feat, reg_feat = head(feat)
  156. # [1, C, H, W]
  157. obj_pred = self.obj_preds[level](reg_feat)
  158. cls_pred = self.cls_preds[level](cls_feat)
  159. reg_pred = self.reg_preds[level](reg_feat)
  160. # anchors: [M, 4]
  161. fmp_size = cls_pred.shape[-2:]
  162. anchors = self.generate_anchors(level, fmp_size)
  163. # [1, C, H, W] -> [H, W, C] -> [M, C]
  164. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  165. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  166. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  167. # decode bbox
  168. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  169. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  170. pred_x1y1 = ctr_pred - wh_pred * 0.5
  171. pred_x2y2 = ctr_pred + wh_pred * 0.5
  172. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  173. all_obj_preds.append(obj_pred)
  174. all_cls_preds.append(cls_pred)
  175. all_box_preds.append(box_pred)
  176. all_anchors.append(anchors)
  177. if self.deploy:
  178. obj_preds = torch.cat(all_obj_preds, dim=0)
  179. cls_preds = torch.cat(all_cls_preds, dim=0)
  180. box_preds = torch.cat(all_box_preds, dim=0)
  181. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  182. bboxes = box_preds
  183. # [n_anchors_all, 4 + C]
  184. outputs = torch.cat([bboxes, scores], dim=-1)
  185. else:
  186. # post process
  187. bboxes, scores, labels = self.post_process(
  188. all_obj_preds, all_cls_preds, all_box_preds)
  189. outputs = {
  190. "scores": scores,
  191. "labels": labels,
  192. "bboxes": bboxes
  193. }
  194. return outputs
  195. # ---------------------- Main Process for Training ----------------------
  196. def forward(self, x):
  197. if not self.trainable:
  198. return self.inference_single_image(x)
  199. else:
  200. # backbone
  201. pyramid_feats = self.backbone(x)
  202. # fpn
  203. pyramid_feats = self.fpn(pyramid_feats)
  204. # non-shared heads
  205. all_fmp_sizes = []
  206. all_obj_preds = []
  207. all_cls_preds = []
  208. all_box_preds = []
  209. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  210. cls_feat, reg_feat = head(feat)
  211. # [B, C, H, W]
  212. obj_pred = self.obj_preds[level](reg_feat)
  213. cls_pred = self.cls_preds[level](cls_feat)
  214. reg_pred = self.reg_preds[level](reg_feat)
  215. B, _, H, W = cls_pred.size()
  216. fmp_size = [H, W]
  217. # generate anchor boxes: [M, 4]
  218. anchors = self.generate_anchors(level, fmp_size)
  219. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  220. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  221. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  222. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  223. # decode bbox
  224. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  225. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  226. pred_x1y1 = ctr_pred - wh_pred * 0.5
  227. pred_x2y2 = ctr_pred + wh_pred * 0.5
  228. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  229. all_obj_preds.append(obj_pred)
  230. all_cls_preds.append(cls_pred)
  231. all_box_preds.append(box_pred)
  232. all_fmp_sizes.append(fmp_size)
  233. # output dict
  234. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  235. "pred_cls": all_cls_preds, # List [B, M, C]
  236. "pred_box": all_box_preds, # List [B, M, 4]
  237. 'fmp_sizes': all_fmp_sizes, # List
  238. 'strides': self.stride, # List
  239. }
  240. return outputs