yolov3.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov3_backbone import build_backbone
  5. from .yolov3_neck import build_neck
  6. from .yolov3_fpn import build_fpn
  7. from .yolov3_head import build_head
  8. # YOLOv3
  9. class YOLOv3(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False,
  18. deploy=False,
  19. no_multi_labels=False,
  20. nms_class_agnostic=False):
  21. super(YOLOv3, self).__init__()
  22. # ------------------- Basic parameters -------------------
  23. self.cfg = cfg # 模型配置文件
  24. self.device = device # cuda或者是cpu
  25. self.num_classes = num_classes # 类别的数量
  26. self.trainable = trainable # 训练的标记
  27. self.conf_thresh = conf_thresh # 得分阈值
  28. self.nms_thresh = nms_thresh # NMS阈值
  29. self.topk_candidates = topk # topk
  30. self.stride = [8, 16, 32] # 网络的输出步长
  31. self.deploy = deploy
  32. self.no_multi_labels = no_multi_labels
  33. self.nms_class_agnostic = nms_class_agnostic
  34. # ------------------- Anchor box -------------------
  35. self.num_levels = 3
  36. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  37. self.anchor_size = torch.as_tensor(
  38. cfg['anchor_size']
  39. ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  40. # ------------------- Network Structure -------------------
  41. ## 主干网络
  42. self.backbone, feats_dim = build_backbone(
  43. cfg['backbone'], trainable&cfg['pretrained'])
  44. ## 颈部网络: SPP模块
  45. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  46. feats_dim[-1] = self.neck.out_dim
  47. ## 颈部网络: 特征金字塔
  48. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  49. self.head_dim = self.fpn.out_dim
  50. ## 检测头
  51. self.non_shared_heads = nn.ModuleList(
  52. [build_head(cfg, head_dim, head_dim, num_classes)
  53. for head_dim in self.head_dim
  54. ])
  55. ## 预测层
  56. self.obj_preds = nn.ModuleList(
  57. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  58. for head in self.non_shared_heads
  59. ])
  60. self.cls_preds = nn.ModuleList(
  61. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  62. for head in self.non_shared_heads
  63. ])
  64. self.reg_preds = nn.ModuleList(
  65. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  66. for head in self.non_shared_heads
  67. ])
  68. # ---------------------- Basic Functions ----------------------
  69. ## generate anchor points
  70. def generate_anchors(self, level, fmp_size):
  71. """
  72. fmp_size: (List) [H, W]
  73. """
  74. fmp_h, fmp_w = fmp_size
  75. # [KA, 2]
  76. anchor_size = self.anchor_size[level]
  77. # generate grid cells
  78. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  79. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  80. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  81. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  82. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  83. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  84. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  85. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  86. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  87. return anchors
  88. ## post-process
  89. def post_process(self, obj_preds, cls_preds, box_preds):
  90. """
  91. Input:
  92. cls_preds: List[np.array] -> [[M, C], ...]
  93. box_preds: List[np.array] -> [[M, 4], ...]
  94. obj_preds: List[np.array] -> [[M, 1], ...] or None
  95. Output:
  96. bboxes: np.array -> [N, 4]
  97. scores: np.array -> [N,]
  98. labels: np.array -> [N,]
  99. """
  100. assert len(cls_preds) == self.num_levels
  101. all_scores = []
  102. all_labels = []
  103. all_bboxes = []
  104. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  105. if self.no_multi_labels:
  106. # [M,]
  107. scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  108. # Keep top k top scoring indices only.
  109. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  110. # topk candidates
  111. predicted_prob, topk_idxs = scores.sort(descending=True)
  112. topk_scores = predicted_prob[:num_topk]
  113. topk_idxs = topk_idxs[:num_topk]
  114. # filter out the proposals with low confidence score
  115. keep_idxs = topk_scores > self.conf_thresh
  116. scores = topk_scores[keep_idxs]
  117. topk_idxs = topk_idxs[keep_idxs]
  118. labels = labels[topk_idxs]
  119. bboxes = box_pred_i[topk_idxs]
  120. else:
  121. # [M, C] -> [MC,]
  122. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  123. # Keep top k top scoring indices only.
  124. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  125. # torch.sort is actually faster than .topk (at least on GPUs)
  126. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  127. topk_scores = predicted_prob[:num_topk]
  128. topk_idxs = topk_idxs[:num_topk]
  129. # filter out the proposals with low confidence score
  130. keep_idxs = topk_scores > self.conf_thresh
  131. scores = topk_scores[keep_idxs]
  132. topk_idxs = topk_idxs[keep_idxs]
  133. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  134. labels = topk_idxs % self.num_classes
  135. bboxes = box_pred_i[anchor_idxs]
  136. all_scores.append(scores)
  137. all_labels.append(labels)
  138. all_bboxes.append(bboxes)
  139. scores = torch.cat(all_scores)
  140. labels = torch.cat(all_labels)
  141. bboxes = torch.cat(all_bboxes)
  142. # to cpu & numpy
  143. scores = scores.cpu().numpy()
  144. labels = labels.cpu().numpy()
  145. bboxes = bboxes.cpu().numpy()
  146. # nms
  147. scores, labels, bboxes = multiclass_nms(
  148. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  149. return bboxes, scores, labels
  150. # ---------------------- Main Process for Inference ----------------------
  151. @torch.no_grad()
  152. def inference(self, x):
  153. # 主干网络
  154. pyramid_feats = self.backbone(x)
  155. # 颈部网络
  156. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  157. # 特征金字塔
  158. pyramid_feats = self.fpn(pyramid_feats)
  159. # 检测头
  160. all_anchors = []
  161. all_obj_preds = []
  162. all_cls_preds = []
  163. all_box_preds = []
  164. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  165. cls_feat, reg_feat = head(feat)
  166. # [1, C, H, W]
  167. obj_pred = self.obj_preds[level](reg_feat)
  168. cls_pred = self.cls_preds[level](cls_feat)
  169. reg_pred = self.reg_preds[level](reg_feat)
  170. # anchors: [M, 2]
  171. fmp_size = cls_pred.shape[-2:]
  172. anchors = self.generate_anchors(level, fmp_size)
  173. # [1, AC, H, W] -> [H, W, AC] -> [M, C]
  174. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  175. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  176. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  177. # decode bbox
  178. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  179. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  180. pred_x1y1 = ctr_pred - wh_pred * 0.5
  181. pred_x2y2 = ctr_pred + wh_pred * 0.5
  182. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  183. all_obj_preds.append(obj_pred)
  184. all_cls_preds.append(cls_pred)
  185. all_box_preds.append(box_pred)
  186. all_anchors.append(anchors)
  187. if self.deploy:
  188. obj_preds = torch.cat(all_obj_preds, dim=0)
  189. cls_preds = torch.cat(all_cls_preds, dim=0)
  190. box_preds = torch.cat(all_box_preds, dim=0)
  191. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  192. bboxes = box_preds
  193. # [n_anchors_all, 4 + C]
  194. outputs = torch.cat([bboxes, scores], dim=-1)
  195. else:
  196. # post process
  197. bboxes, scores, labels = self.post_process(
  198. all_obj_preds, all_cls_preds, all_box_preds)
  199. outputs = {
  200. "scores": scores,
  201. "labels": labels,
  202. "bboxes": bboxes
  203. }
  204. return outputs
  205. # ---------------------- Main Process for Training ----------------------
  206. def forward(self, x):
  207. if not self.trainable:
  208. return self.inference(x)
  209. else:
  210. bs = x.shape[0]
  211. # 主干网络
  212. pyramid_feats = self.backbone(x)
  213. # 颈部网络
  214. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  215. # 特征金字塔
  216. pyramid_feats = self.fpn(pyramid_feats)
  217. # 检测头
  218. all_fmp_sizes = []
  219. all_obj_preds = []
  220. all_cls_preds = []
  221. all_box_preds = []
  222. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  223. cls_feat, reg_feat = head(feat)
  224. # [B, C, H, W]
  225. obj_pred = self.obj_preds[level](reg_feat)
  226. cls_pred = self.cls_preds[level](cls_feat)
  227. reg_pred = self.reg_preds[level](reg_feat)
  228. fmp_size = cls_pred.shape[-2:]
  229. # generate anchor boxes: [M, 4]
  230. anchors = self.generate_anchors(level, fmp_size)
  231. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  232. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  233. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  234. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  235. # decode bbox
  236. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  237. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  238. pred_x1y1 = ctr_pred - wh_pred * 0.5
  239. pred_x2y2 = ctr_pred + wh_pred * 0.5
  240. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  241. all_obj_preds.append(obj_pred)
  242. all_cls_preds.append(cls_pred)
  243. all_box_preds.append(box_pred)
  244. all_fmp_sizes.append(fmp_size)
  245. # output dict
  246. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  247. "pred_cls": all_cls_preds, # List [B, M, C]
  248. "pred_box": all_box_preds, # List [B, M, 4]
  249. 'fmp_sizes': all_fmp_sizes, # List
  250. 'strides': self.stride, # List
  251. }
  252. return outputs