| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- import torch
- import torch.nn as nn
- from utils.misc import multiclass_nms
- from .yolov3_backbone import build_backbone
- from .yolov3_neck import build_neck
- from .yolov3_fpn import build_fpn
- from .yolov3_head import build_head
- # YOLOv3
- class YOLOv3(nn.Module):
- def __init__(self,
- cfg,
- device,
- num_classes=20,
- conf_thresh=0.01,
- topk=100,
- nms_thresh=0.5,
- trainable=False,
- deploy=False,
- no_multi_labels=False,
- nms_class_agnostic=False):
- super(YOLOv3, self).__init__()
- # ------------------- Basic parameters -------------------
- self.cfg = cfg # 模型配置文件
- self.device = device # cuda或者是cpu
- self.num_classes = num_classes # 类别的数量
- self.trainable = trainable # 训练的标记
- self.conf_thresh = conf_thresh # 得分阈值
- self.nms_thresh = nms_thresh # NMS阈值
- self.topk_candidates = topk # topk
- self.stride = [8, 16, 32] # 网络的输出步长
- self.deploy = deploy
- self.no_multi_labels = no_multi_labels
- self.nms_class_agnostic = nms_class_agnostic
- # ------------------- Anchor box -------------------
- self.num_levels = 3
- self.num_anchors = len(cfg['anchor_size']) // self.num_levels
- self.anchor_size = torch.as_tensor(
- cfg['anchor_size']
- ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
-
- # ------------------- Network Structure -------------------
- ## 主干网络
- self.backbone, feats_dim = build_backbone(
- cfg['backbone'], trainable&cfg['pretrained'])
- ## 颈部网络: SPP模块
- self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
- feats_dim[-1] = self.neck.out_dim
- ## 颈部网络: 特征金字塔
- self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
- self.head_dim = self.fpn.out_dim
- ## 检测头
- self.non_shared_heads = nn.ModuleList(
- [build_head(cfg, head_dim, head_dim, num_classes)
- for head_dim in self.head_dim
- ])
- ## 预测层
- self.obj_preds = nn.ModuleList(
- [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
- for head in self.non_shared_heads
- ])
- self.cls_preds = nn.ModuleList(
- [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
- for head in self.non_shared_heads
- ])
- self.reg_preds = nn.ModuleList(
- [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
- for head in self.non_shared_heads
- ])
-
- # ---------------------- Basic Functions ----------------------
- ## generate anchor points
- def generate_anchors(self, level, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- fmp_h, fmp_w = fmp_size
- # [KA, 2]
- anchor_size = self.anchor_size[level]
- # generate grid cells
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- # [HW, 2] -> [HW, KA, 2] -> [M, 2]
- anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
- anchor_xy = anchor_xy.view(-1, 2).to(self.device)
- # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
- anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
- anchor_wh = anchor_wh.view(-1, 2).to(self.device)
- anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
- return anchors
-
- ## post-process
- def post_process(self, obj_preds, cls_preds, box_preds):
- """
- Input:
- cls_preds: List[np.array] -> [[M, C], ...]
- box_preds: List[np.array] -> [[M, 4], ...]
- obj_preds: List[np.array] -> [[M, 1], ...] or None
- Output:
- bboxes: np.array -> [N, 4]
- scores: np.array -> [N,]
- labels: np.array -> [N,]
- """
- assert len(cls_preds) == self.num_levels
- all_scores = []
- all_labels = []
- all_bboxes = []
-
- for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
- if self.no_multi_labels:
- # [M,]
- scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # topk candidates
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- labels = labels[topk_idxs]
- bboxes = box_pred_i[topk_idxs]
- else:
- # [M, C] -> [MC,]
- scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- labels = topk_idxs % self.num_classes
- bboxes = box_pred_i[anchor_idxs]
- all_scores.append(scores)
- all_labels.append(labels)
- all_bboxes.append(bboxes)
- scores = torch.cat(all_scores)
- labels = torch.cat(all_labels)
- bboxes = torch.cat(all_bboxes)
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
- return bboxes, scores, labels
-
- # ---------------------- Main Process for Inference ----------------------
- @torch.no_grad()
- def inference(self, x):
- # 主干网络
- pyramid_feats = self.backbone(x)
- # 颈部网络
- pyramid_feats[-1] = self.neck(pyramid_feats[-1])
- # 特征金字塔
- pyramid_feats = self.fpn(pyramid_feats)
- # 检测头
- all_anchors = []
- all_obj_preds = []
- all_cls_preds = []
- all_box_preds = []
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
- cls_feat, reg_feat = head(feat)
- # [1, C, H, W]
- obj_pred = self.obj_preds[level](reg_feat)
- cls_pred = self.cls_preds[level](cls_feat)
- reg_pred = self.reg_preds[level](reg_feat)
- # anchors: [M, 2]
- fmp_size = cls_pred.shape[-2:]
- anchors = self.generate_anchors(level, fmp_size)
- # [1, AC, H, W] -> [H, W, AC] -> [M, C]
- obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
- cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
- reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
- # decode bbox
- ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
- wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
- pred_x1y1 = ctr_pred - wh_pred * 0.5
- pred_x2y2 = ctr_pred + wh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- all_obj_preds.append(obj_pred)
- all_cls_preds.append(cls_pred)
- all_box_preds.append(box_pred)
- all_anchors.append(anchors)
- if self.deploy:
- obj_preds = torch.cat(all_obj_preds, dim=0)
- cls_preds = torch.cat(all_cls_preds, dim=0)
- box_preds = torch.cat(all_box_preds, dim=0)
- scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
- bboxes = box_preds
- # [n_anchors_all, 4 + C]
- outputs = torch.cat([bboxes, scores], dim=-1)
- else:
- # post process
- bboxes, scores, labels = self.post_process(
- all_obj_preds, all_cls_preds, all_box_preds)
- outputs = {
- "scores": scores,
- "labels": labels,
- "bboxes": bboxes
- }
- return outputs
- # ---------------------- Main Process for Training ----------------------
- def forward(self, x):
- if not self.trainable:
- return self.inference(x)
- else:
- bs = x.shape[0]
- # 主干网络
- pyramid_feats = self.backbone(x)
- # 颈部网络
- pyramid_feats[-1] = self.neck(pyramid_feats[-1])
- # 特征金字塔
- pyramid_feats = self.fpn(pyramid_feats)
- # 检测头
- all_fmp_sizes = []
- all_obj_preds = []
- all_cls_preds = []
- all_box_preds = []
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
- cls_feat, reg_feat = head(feat)
- # [B, C, H, W]
- obj_pred = self.obj_preds[level](reg_feat)
- cls_pred = self.cls_preds[level](cls_feat)
- reg_pred = self.reg_preds[level](reg_feat)
- fmp_size = cls_pred.shape[-2:]
- # generate anchor boxes: [M, 4]
- anchors = self.generate_anchors(level, fmp_size)
-
- # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
- # decode bbox
- ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
- wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
- pred_x1y1 = ctr_pred - wh_pred * 0.5
- pred_x2y2 = ctr_pred + wh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- all_obj_preds.append(obj_pred)
- all_cls_preds.append(cls_pred)
- all_box_preds.append(box_pred)
- all_fmp_sizes.append(fmp_size)
- # output dict
- outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
- "pred_cls": all_cls_preds, # List [B, M, C]
- "pred_box": all_box_preds, # List [B, M, 4]
- 'fmp_sizes': all_fmp_sizes, # List
- 'strides': self.stride, # List
- }
- return outputs
|